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From Floating-Point Arithmetics to Interval Arithmetics

▸ Floating-Point Arithmetic:

x = (−1)s ⋅ 1.1010011100 . . .1010
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅2e

Discretization of the real line:

⇒ Rounding errors

▸ Interval Arithmetic ▸ Well-known limitations:

Overapprox reals by intervals

π ∈ [3.14,3.15] e ∈ [2.71,2.72]

Interval extension of arithmetic
operators:

π − e ∈

Wrapping effect Loss of correlation

• O

x

y

[−x , x] − [−x , x]
= [−2x ,2x] ≠ [0,0].
cos([0,2π] + ε) − cos([0,2π])
= [−1,1] − [−1,1] = [−2,2]
but ∣ cos(x + ε) − cos(x)∣ ≤ ε.
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Approximation Tools in Function Spaces

a class F of functions, a reference norm ∥ ⋅ ∥, and a computable family P = (Pn)
to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact
interval.

Taylor expansions... should be used with caution!

monomial basis
fast computations
related to initial conditions

TN(f )(x) =
N
∑
n=0

f (n)(0)
n!

xn

non smooth functions?
non-analytic functions?
radius of convergence?

−1 10
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Chebyshev Polynomials and Series

Chebyshev Family of Polynomials
T0(X) = 1,
T1(X) = X ,

Tn+2(X) = 2XTn+1(X) −Tn(X).

Trigonometric Relation

Tn(cosϑ) = cosnϑ.

⇒ ∀t ∈ [−1,1], ∣Tn(t)∣ ≤ 1.

Multiplication and Integration

TnTm = 1
2 (Tn+m +Tn−m).

∫ Tn =
1
2 (

Tn+1
n+1 −

Tn−1
n−1 ).

−1 1

T0(X) = 1
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−1 1
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Chebyshev Polynomials and Series

Chebyshev Family of Polynomials
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Tn(cosϑ) = cosnϑ.

⇒ ∀t ∈ [−1,1], ∣Tn(t)∣ ≤ 1.

Multiplication and Integration

TnTm = 1
2 (Tn+m +Tn−m).

∫ Tn =
1
2 (

Tn+1
n+1 −

Tn−1
n−1 ).

Scalar Product and Orthogonality Relations

⟨f ,g⟩ = ∫
1

−1

f (t)g(t)
√
1 − t2

dt = ∫
π

0
f (cosϑ)g(cosϑ)dϑ.

⇒(Tn)n≥0 orthogonal family.

Chebyshev Coefficients and Series

an = 1
π ∫

π
0 f (cosϑ) cosnϑdϑ, n ∈ Z.

f̂ [N](t) = ∑∣n∣≤N anTn(t), t ∈ [−1,1].

Convergence Theorems

If f ∈ Ck , f̂ [N] → f in O(N−k).
If f analytic, f̂ [N] → f exponentially fast.
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Rigorous Polynomial Approximations

Definition

A pair (P, ε) ∈ R[X] ×R+ is a rigorous
polynomial approximation (RPA) of f for a
given norm ∥ ⋅ ∥ if ∥f − P∥ ≤ ε.

Example: sup-norm over [−1,1]:

f ∈ (P, ε) ⇔ ∣f (t) − P(t)∣ ≤ ε ∀t ∈ [−1,1]

Some elementary operations:

(P, ε) + (Q, η) ∶= (P +Q, ε + η),
(P, ε) − (Q, η) ∶= (P −Q, ε + η),
(P, ε) ⋅ (Q, η) ∶= (PQ, ∥Q∥η + ∥P∥ε + ηε)
provided that ∥fg∥ ≤ ∥f ∥∥g∥,

∫0(P, ε) ∶= (∫
t
0 P(s)ds, ε)

if ∥ ⋅ ∥ = ∥ ⋅ ∥
∞,[−1,1].

Example:

÷ ? L ?

∫
0

×

K −

+

F G

H
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Fixed-Point Based Validation
Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T ⋅ x = x over metric space (X ,d)
and obtain x candidate approximation of exact solution x∗.
▸ Find rigorous error bound ∥x − x∗∥.

Banach Fixed-Point Theorem

If (X ,d) is complete and T contracting of ratio µ < 1,
▸ Then T admits a unique fixed-point x∗,

and
▸ For all x ∈ X ,

d(x ,T ⋅ x)
1 +µ

≤ d(x , x∗) ≤
d(x ,T ⋅ x)

1 −µ
.

Quasi-Newton Method for F ⋅ x = 0

Obtain A ≈ (DF)−1 in order to define:

T ⋅ x = x −A ⋅F ⋅ x .

An Arithmetic for Rigorous Polynomial Approximations 7/17



Fixed-Point Based Validation
Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T ⋅ x = x over metric space (X ,d)
and obtain x candidate approximation of exact solution x∗.
▸ Find rigorous error bound ∥x − x∗∥.

Banach Fixed-Point Theorem

If (X ,d) is complete and T contracting of ratio µ < 1,
▸ Then T admits a unique fixed-point x∗,

and
▸ For all x ∈ X ,

d(x ,T ⋅ x)
1 +µ

≤ d(x , x∗) ≤
d(x ,T ⋅ x)

1 −µ
.

•x

•x∗

Quasi-Newton Method for F ⋅ x = 0

Obtain A ≈ (DF)−1 in order to define:

T ⋅ x = x −A ⋅F ⋅ x .

An Arithmetic for Rigorous Polynomial Approximations 7/17



Fixed-Point Based Validation
Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T ⋅ x = x over metric space (X ,d)
and obtain x candidate approximation of exact solution x∗.
▸ Find rigorous error bound ∥x − x∗∥.

Banach Fixed-Point Theorem

If (X ,d) is complete and T contracting of ratio µ < 1,
▸ Then T admits a unique fixed-point x∗,

and
▸ For all x ∈ X ,

d(x ,T ⋅ x)
1 +µ

≤ d(x , x∗) ≤
d(x ,T ⋅ x)

1 −µ
.

•x0 = x

•x1 = T · x0

•x∗

Quasi-Newton Method for F ⋅ x = 0

Obtain A ≈ (DF)−1 in order to define:

T ⋅ x = x −A ⋅F ⋅ x .

An Arithmetic for Rigorous Polynomial Approximations 7/17



Fixed-Point Based Validation
Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T ⋅ x = x over metric space (X ,d)
and obtain x candidate approximation of exact solution x∗.
▸ Find rigorous error bound ∥x − x∗∥.

Banach Fixed-Point Theorem

If (X ,d) is complete and T contracting of ratio µ < 1,
▸ Then T admits a unique fixed-point x∗,

and
▸ For all x ∈ X ,

d(x ,T ⋅ x)
1 +µ

≤ d(x , x∗) ≤
d(x ,T ⋅ x)

1 −µ
.

•x0 = x

•x1

•x2 = T · x1

•x∗

Quasi-Newton Method for F ⋅ x = 0

Obtain A ≈ (DF)−1 in order to define:

T ⋅ x = x −A ⋅F ⋅ x .

An Arithmetic for Rigorous Polynomial Approximations 7/17



Fixed-Point Based Validation
Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T ⋅ x = x over metric space (X ,d)
and obtain x candidate approximation of exact solution x∗.
▸ Find rigorous error bound ∥x − x∗∥.

Banach Fixed-Point Theorem

If (X ,d) is complete and T contracting of ratio µ < 1,
▸ Then T admits a unique fixed-point x∗,

and
▸ For all x ∈ X ,

d(x ,T ⋅ x)
1 +µ

≤ d(x , x∗) ≤
d(x ,T ⋅ x)

1 −µ
.

•x0 = x

•x1

•x2

•x3 = T · x2•
x∗

Quasi-Newton Method for F ⋅ x = 0

Obtain A ≈ (DF)−1 in order to define:

T ⋅ x = x −A ⋅F ⋅ x .

An Arithmetic for Rigorous Polynomial Approximations 7/17



Fixed-Point Based Validation
Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T ⋅ x = x over metric space (X ,d)
and obtain x candidate approximation of exact solution x∗.
▸ Find rigorous error bound ∥x − x∗∥.

Banach Fixed-Point Theorem

If (X ,d) is complete and T contracting of ratio µ < 1,
▸ Then T admits a unique fixed-point x∗,

and
▸ For all x ∈ X ,

d(x ,T ⋅ x)
1 +µ

≤ d(x , x∗) ≤
d(x ,T ⋅ x)

1 −µ
.

•x0 = x

•x1

•x2

•x3
•x4 = T · x3
•

x∗

Quasi-Newton Method for F ⋅ x = 0

Obtain A ≈ (DF)−1 in order to define:

T ⋅ x = x −A ⋅F ⋅ x .

An Arithmetic for Rigorous Polynomial Approximations 7/17



Fixed-Point Based Validation
Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T ⋅ x = x over metric space (X ,d)
and obtain x candidate approximation of exact solution x∗.
▸ Find rigorous error bound ∥x − x∗∥.

Banach Fixed-Point Theorem

If (X ,d) is complete and T contracting of ratio µ < 1,
▸ Then T admits a unique fixed-point x∗, and
▸ For all x ∈ X ,

d(x ,T ⋅ x)
1 +µ

≤ d(x , x∗) ≤
d(x ,T ⋅ x)

1 −µ
.

•x

•T · x

•x
∗

Quasi-Newton Method for F ⋅ x = 0

Obtain A ≈ (DF)−1 in order to define:

T ⋅ x = x −A ⋅F ⋅ x .

An Arithmetic for Rigorous Polynomial Approximations 7/17



Fixed-Point Based Validation
Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T ⋅ x = x over metric space (X ,d)
and obtain x candidate approximation of exact solution x∗.
▸ Find rigorous error bound ∥x − x∗∥.

Banach Fixed-Point Theorem

If (X ,d) is complete and T contracting of ratio µ < 1,
▸ Then T admits a unique fixed-point x∗, and
▸ For all x ∈ X ,

d(x ,T ⋅ x)
1 +µ

≤ d(x , x∗) ≤
d(x ,T ⋅ x)

1 −µ
.

•x

•T · x

•x
∗

Quasi-Newton Method for F ⋅ x = 0

Obtain A ≈ (DF)−1 in order to define:

T ⋅ x = x −A ⋅F ⋅ x .

An Arithmetic for Rigorous Polynomial Approximations 7/17



An Example: Tschauner and Hempel Equation
Relative Motion in Keplerian Dynamics

Reduced Equation

z ′′ + (4 −
3

1 + e cos ν
) z = c

Earth

Target
trajectory
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r t
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Fixed-Point Based Validation
Application to Division

÷ Division: g/f (f ≠ 0)

Approximation of x ↦ 4 − 3
1+e cos x

▸ Solve F ⋅ ϕ = f ϕ − g = 0

(DF)ϕ ⋅ h = f h (DF)
−1
ϕ ⋅ h = f −1h

▸ Use f0 ≈ f −1:

T ⋅ ϕ = ϕ T ⋅ ϕ = ϕ − f0(f ϕ − g)

✓ RPA for x ↦ cos x :

0.77T0(x)−0.23T2(x)+0.005T4(x)±4.2⋅10−5 x ∈ [−1,1]

✓ RPA for x ↦ 1 + 0.5 cos x :

1.38T0(x)−0.11T2(x)+0.002T4(x)±2.1⋅10−5 x ∈ [−1,1]

ϕ = 0.73T0(x)+0.06T2(x) ≈ 1/(1+0.5 cos x)

▸ T affine, µ = ∥DT∥ = ∥1 − f0f ∥ < 1 ?

∥f0(f ϕ − g)∥
1 +µ

≤ ∥ϕ −
g
f
∥ ≤

∥f0(f ϕ − g)∥
1 −µ

▸ µ = 3.7 ⋅ 10−3 << 1
✓ RPA for x ↦ 1/(1 + 0.5 cos x):

0.73T0(x) + 0.06T2(x) ± 1.3 ⋅ 10−3

✓ RPA for x ↦ 4 − 3/(1 + 0.5 cos x):

1.82T0(x) − 0.18T2(x) ± 3.8 ⋅ 10−3
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Linear Ordinary Differential Equations

LODE and Initial Value Problem

y(r)(t) + αr−1(t)y(r−1)(t) + ⋅ ⋅ ⋅ + α1(t)y ′(t) + α0(t)y(t) = g(t)

y(−1) = v0 y ′(−1) = v1 . . . y(r−1)(−1) = vr−1
(D)

t ∈ [−1,1] αi ,g sufficiently regular (C0, RPA, polynomial)

Integral Reformulation

Let ϕ = y(r), (D) becomes:
ϕ +K ⋅ ϕ = ψ, (I)

K ⋅ ϕ(t) =
r−1
∑
j=0
βj(t)∫

t

−1
Tj(s)ϕ(s)ds

⇒ compact operator

ψ(t) = g(t) + (some function depending on the vj ’s)

Theorem (Picard-Lindelöf)

(I) (and hence (D)) has a unique solution.
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The Almost-Banded Structure of the Operator K
Matrix Representation in Chebyshev Basis

The infinite-dimensional operator K.
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The Almost-Banded Structure of the Operator K
Example with Tschauner-Hempel Equation

K ⋅ϕ = t (4 − 3
1 + e cos t

)∫
t

t0
ϕ(s)ds + (−4 + 3

1 + e cos t
)∫

t

t0
sϕ(s)ds
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The Almost-Banded Structure of the Operator K
Example with Tschauner-Hempel Equation

K ⋅ϕ ≈ t(1.82 − 0.18T2(t))∫
t

t0
ϕ(s)ds + (−1.82 + 0.18T2(t))∫

t

t0
sϕ(s)ds
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The Almost-Banded Structure of the Operator K
Example with Tschauner-Hempel Equation

K ⋅ϕ ≈ (1.73T1(t) − 0.09T3(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

β0(t)

∫
t

t0
ϕ(s)ds + (−1.82 + 0.18T2(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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Approximate Solution to Tschauner-Hemple Equation

We want to solve z ′′(t) + (4 − 3
1+0.5 cos t ) z(t) = c with z(−1) = 0, z ′(−1) = 1 and

c = 1.

Equivalent to (I +K) ⋅ ϕ = ψ where ϕ = z ′′.
We have a matrix representation of I +K[N].
ψ ≈ −0.82T0 − 1.73T1 + 0.18T2 + 0.09T3.
Hence, by inverting the linear system, we get:

ϕ = −0.6T0 − 1.19T1 + 0.62T2 + 0.17T3 − 0.05T4 − 0.01T5

+ 2.1 ⋅ 10−3T6 + 3.2 ⋅ 10−3T7 − 5.8 ⋅ 10−5T8 − 7.6 ⋅ 10−6T9 + 1.2 ⋅ 10−6T10

+ 1.4 ⋅ 10−7T11 − 1.9 ⋅ 10−8T12 − 2.0 ⋅ 10−9T13 + 2.6 ⋅ 10−10T14 + 2.5 ⋅ 10−11T15

− 3.0 ⋅ 10−12T16 − 2.6 ⋅ 10−13T17 + 3.0 ⋅ 10−14T18 + 2.5 ⋅ 10−15T19 − 2.6 ⋅ 10−16T20
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Designing the Newton-like Operator T

Construct T: To-Do List
Truncation order N.

Approx inverse:

A ≈ (I +K)
−1

Decomposition of the Operator Norm

∥DT∥ = ∥I−A(I+K)∥ ≤ ∥I−A(I+K[N]
)∥+∥A(K−K[N]

)∥.

Approximation error: Truncation error:

Involves basic arithmetic operations
on matrices:

Multiplication
Addition
1-norm

Determines the minimal value of N we
can choose.

A

1
1

1
1

1
1

1
1

1

·

·A K−K[N ]
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Integration of LODEs in RPA Arithmetics

L ⋅ y = y(r)(t) + αr−1(t)y(r−1)(t) + ⋅ ⋅ ⋅ + α1(t)y ′(t) + α0(t)y(t) = g(t)

y(−1) = v0 y ′(−1) = v1 . . . y(r−1)(−1) = vr−1
(D)

Rigorous Solving - Overview

1 Integral reformulation: ϕ +K ⋅ ϕ = ψ with ϕ = y(r),
2 Numerical solving: approximation ϕ of ϕ∗,
3 Creating Newton-like operator: T ⋅ ϕ = ϕ,
4 Obtaining µ ≥ ∥DT∥,
5 If µ < 1, ∥ϕ − ϕ∗∥ ≤ ε ∶= ∥ϕ −T ⋅ ϕ∥/(1 −µ),
6 Integrate RPA (ϕ, ε) r times with initial conditions to obtain a RPA for y∗.

▸ Extension of the method to RPA
coefficients αi = (α̃i , εi)
▸ Extension to Boundary Value Problems
(BVP)

L

α0 • • • αr−1 ~v
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Solution to Tschauner and Hempel Equations
Bring our Example to the End

Approximation error ≤ 1.5 ⋅ 10−3.

Truncation error ≤ 1.21 ⋅ 10−2.

µ ≤ 1.5 ⋅ 10−3 + 1.21 ⋅ 10−2

= 1.36 ⋅ 10−2

.

∥T ⋅ ϕ − ϕ∥ = ∥A(ϕ +K ⋅ ϕ − ψ)∥ = 6.48 ⋅ 10−16.

Hence:

6.48 ⋅ 10−16

1 +µ
≤ ∥ϕ − ϕ∗∥ ≤

6.48 ⋅ 10−16

1 −µ

Take into account approximation error of coefficient!
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Conclusion and Future Work

A general framework for an arithmetic of RPAs in Chebyshev basis.

An efficient algorithm to compute RPAs for LODEs:
Coefficients represented by RPAs.
Extension to the vectorial case + a new fixed-point theorem for vector-valued problems.

Future directions:

Non-linear ODEs.
Other orthogonal families of polynomials.

A Coq implementation.
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Fixed-Point Based Validation
Application to Division and Square Root

÷ Division: g/f (f ≠ 0)

√
Square Root:

√
f (f > 0)

▸ Solve F ⋅ ϕ = f ϕ − g = 0

▸ Solve F ⋅ ϕ = ϕ2 − f = 0 Two solutions!

(DF)ϕ ⋅ h = f h (DF)
−1
ϕ ⋅ h = f −1h

(DF)ϕ ⋅ h = 2ϕh (DF)
−1
ϕ ⋅ h =

ϕ−1

2
h

▸ Use f0 ≈ f −1: ▸ Use f0 ≈ ϕ−1 (≈ 1/
√
f ):

T ⋅ ϕ = ϕ T ⋅ ϕ = ϕ − f0(f ϕ − g) T ⋅ ϕ = ϕ T ⋅ ϕ = ϕ −
f0
2
(ϕ2

− f )

▸ T affine, µ = ∥DT∥ = ∥1 − f0f ∥ < 1 ? ▸ T non-linear, ∥(DT)ϕ∥ = ∥1 − f0ϕ∥.

∥f0(f ϕ − g)∥
1 +µ

≤ ∥ϕ −
g
f
∥ ≤

∥f0(f ϕ − g)∥
1 −µ

∃r > 0 ⋅ T ∶ B(ϕ, r) → B(ϕ, r)?

∥T ⋅ ϕ − ϕ∥ + r sup
ψ∈B(ϕ,r)

∥(DT)ψ∥ < r

dessin inclusion boule image

▸ Check ∆ ≥ 0 → 0 ≤ rmin ≤ rmax.
▸ Check µ = ∥1 − f0ϕ∥ + ∥f0∥rmin < 1.
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Designing the Newton-like Operator T
Bounding the Truncation Error

Truncation Error

∥A ⋅ (K −K[N]
)∥ = sup

i≥0
∥A ⋅ (K −K[N]

) ⋅Ti∥

K

1 Direct computation.
2 Direct computation.
3 Bound the remaining infinite
number of columns:

Using the bounds in 1/i and 1/i2:
possibly large overestimations.

diag(i) ≤ C
i

init(i) ≤ D
i2

Using a first order difference
method: differences in 1/i2 and
1/i4.

diag(i) ≤ diag(i0) +
C ′

i2

init(i) ≤ init(i0) +
D′

i4

Cost: O(N(h + d)) or O((h′ + d ′)(h + d))
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number of columns:

Using the bounds in 1/i and 1/i2:
possibly large overestimations.

diag(i) ≤ C
i

init(i) ≤ D
i2

Using a first order difference
method: differences in 1/i2 and
1/i4.

diag(i) ≤ diag(i0) +
C ′

i2

init(i) ≤ init(i0) +
D′

i4

Cost: O(N(h + d)) or O((h′ + d ′)(h + d))
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Coupled Systems of Linear Ordinary Differential Equations

Coupled LODEs and Initial Value Problem

Y (r)
(t) +Ar−1(t) ⋅Y (r−1)

(t) + ⋅ ⋅ ⋅ +A1(t) ⋅Y ′
(t) +A0(t) ⋅Y (t) = G(t) (p-D)

Ak(t) =
⎛
⎜
⎝

ak11(t) ⋯ ak1p(t)
⋮ ⋱ ⋮

akp1(t) ⋯ akpp(t)

⎞
⎟
⎠

G(t) =
⎛
⎜
⎝

g1(t)
⋮

gp(t)

⎞
⎟
⎠

t ∈ [−1,1] Y (k)
i (−1) = vik i ∈ J1,pK, k ∈ J0, r − 1K

Integral Reformulation

Posing Φ = Y (r), System (p-D) is transformed into:

Φ(t) + ⋅Φ(s)ds = Ψ(t) (p-I)
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i (−1) = vik i ∈ J1,pK, k ∈ J0, r − 1K

Integral Reformulation

Posing Φ = Y (r), System (p-D) is transformed into:

Φ(t) + ∫
t

t0

⎛
⎜
⎝

k11(t, s) ⋯ k1p(t, s)
⋮ ⋱ ⋮

kp1(t) ⋯ kpp(t)

⎞
⎟
⎠
⋅Φ(s)ds = Ψ(t) (p-I)

An Arithmetic for Rigorous Polynomial Approximations 17/17



The Almost-Banded Structure of the Operator K
Example in Dimension 4

K1,1 K1,2 K1,3 K1,4

K2,1 K2,2 K2,3 K2,4

K3,1 K3,2 K3,3 K3,4

K4,1 K4,2 K4,3 K4,4

K
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The Almost-Banded Structure of the Operator K
Example in Dimension 4

K[N] (rearranged basis)
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Vector-Valued Fixed-Point Validation

Vector-Valued Metric and Contractions

(X1,d1), . . . , (Xp ,dp) complete metric spaces.
d(x , y) = (d1(x1, y1), . . . ,dp(xp , yp)) ∈ Rp

+
vector-valued metric.

f ∶ X → X is Λ-Lipschitz for Λ ∈ Rp×p
+

iff:

d(f (x), f (y)) ≤ Λ ⋅ d(x , y) ∀x , y ∈ X

f ∶ X → X is a contraction if it is Λ-Lipschitz for Λ ∈ Rp×p
+

s.t. Λk → 0 as k →∞.

Perov: T admits a unique fixed-point x∗.

d(x , x∗) ≤ d(x ,T ⋅ x) + d(T ⋅ x , x∗).
d(x ,T ⋅ x) ≤ d(x , x∗) + d(T ⋅ x , x∗).

Error Polytope

Let ε = d(x , x∗) and η = d(x ,T ⋅ x):

(1 − Λ) ⋅ ε ≤ η (P)
(1 + Λ) ⋅ ε ≥ η

ε ≥ 0

• η
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