

Power of Floating-Point Scientific Computing...

Power of Floating-Point Scientific Computing...

Power of Floating-Point Scientific Computing...

rounding errors

rounding errors

safety-critical engineering

safety-critical engineering

computer-assisted mathematics

▶ Floating-Point Arithmetic:

$$x = (-1)^s \cdot 1. \underbrace{1010011100...1010}_{m} \cdot 2^e$$

▶ Floating-Point Arithmetic:

$$x = (-1)^{s} \cdot 1.\underbrace{1010011100...1010}_{m} \cdot 2^{e}$$

⇒ Rounding errors

▶ Floating-Point Arithmetic:

$$x = (-1)^{s} \cdot 1.\underbrace{1010011100...1010}_{m} \cdot 2^{e}$$

⇒ Rounding errors

▶ Interval Arithmetic

Overapprox reals by intervals

$$\pi \in [3.14, 3.15]$$
 $e \in [2.71, 2.72]$

▶ Floating-Point Arithmetic:

$$x = (-1)^{s} \cdot 1. \underbrace{1010011100 \dots 1010}_{m} \cdot 2^{e}$$

⇒ Rounding errors

▶ Interval Arithmetic

Overapprox reals by intervals

$$\pi \in \left[3.14, 3.15\right] \qquad e \in \left[2.71, 2.72\right]$$

$$e \in [2.71, 2.72]$$

Interval extension of arithmetic operators:

$$\pi - e \in [3.14 - 2.72, 3.15 - 2.71]$$

▶ Floating-Point Arithmetic:

$$x = (-1)^{s} \cdot 1.\underbrace{1010011100...1010}_{m} \cdot 2^{e}$$

⇒ Rounding errors

▶ Interval Arithmetic

Overapprox reals by intervals

$$\pi \in \left[3.14, 3.15\right] \qquad e \in \left[2.71, 2.72\right]$$

Interval extension of arithmetic operators:

$$\pi - e \in [0.42, 0.44]$$

▶ Floating-Point Arithmetic:

$$x = (-1)^{s} \cdot 1.\underbrace{1010011100...1010}_{m} \cdot 2^{e}$$

⇒ Rounding errors

▶ Interval Arithmetic

Overapprox reals by intervals

$$\pi \in \left[3.14, 3.15\right] \qquad e \in \left[2.71, 2.72\right]$$

08 2-1 201 215

$$e \in [2.71, 2.72]$$

Interval extension of arithmetic operators:

$$\pi-e\in \left[0.42,0.44\right]$$

Well-known limitations:

Wrapping effect

▶ Floating-Point Arithmetic:

$$x = (-1)^{s} \cdot 1. \underbrace{1010011100...1010}_{m} \cdot 2^{e}$$

⇒ Rounding errors

Interval Arithmetic

Overapprox reals by intervals

$$\pi \in [3.14, 3.15]$$
 $e \in [2.71, 2.72]$

08 2-1 201 215

$$e \in [2.71, 2.72]$$

Interval extension of arithmetic operators:

$$\pi - e \in [0.42, 0.44]$$

Well-known limitations:

Wrapping effect

Loss of correlation

- [-x,x]-[-x,x] $= [-2x, 2x] \neq [0, 0].$
- $\cos([0,2\pi]+\varepsilon)-\cos([0,2\pi])$ = [-1,1] - [-1,1] = [-2,2]but $|\cos(x+\varepsilon)-\cos(x)| \le \varepsilon$.

2 Rigorous Polynomial Approximations

3 A Posteriori Validation with Fixed-Points

4 Validated Solutions of Linear Differential Equations

5 Conclusion and Future Work

6 Some Extras

Outline

- 1 Introduction
- 2 Rigorous Polynomial Approximations
- 3 A Posteriori Validation with Fixed-Points
- 4 Validated Solutions of Linear Differential Equations
- 5 Conclusion and Future Work
- 6 Some Extra

■ a class \mathcal{F} of functions, a reference norm $\|\cdot\|$, and a *computable* family $\mathcal{P} = (P_n)$ to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact interval.

■ a class \mathcal{F} of functions, a reference norm $\|\cdot\|$, and a *computable* family $\mathcal{P} = (P_n)$ to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact interval.

Taylor expansions...

- monomial basis
- fast computations
- related to initial conditions

$$T_N(f)(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n$$

Approximation Tools in Function Spaces

a class \mathcal{F} of functions, a reference norm $\|\cdot\|$, and a *computable* family $\mathcal{P} = (P_n)$ to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact interval.

Taylor expansions...

- monomial basis
- fast computations
- related to initial conditions

$$T_N(f)(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n$$

- non smooth functions?
- non-analytic functions?
- radius of convergence?

a a class \mathcal{F} of functions, a reference norm $\|\cdot\|$, and a *computable* family $\mathcal{P}=(P_n)$ to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact interval.

Taylor expansions...

- monomial basis
- fast computations
- related to initial conditions

$$T_N(f)(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n$$

- non smooth functions?
- non-analytic functions?
- radius of convergence?

a a class \mathcal{F} of functions, a reference norm $\|\cdot\|$, and a *computable* family $\mathcal{P}=(P_n)$ to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact interval.

Taylor expansions...

- monomial basis
- fast computations
- related to initial conditions

$$T_N(f)(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n$$

- non smooth functions?
- non-analytic functions?
- radius of convergence?

Approximation Tools in Function Spaces

■ a class \mathcal{F} of functions, a reference norm $\|\cdot\|$, and a *computable* family $\mathcal{P} = (P_n)$ to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact interval.

Taylor expansions...

- monomial basis
- fast computations
- related to initial conditions

$$T_N(f)(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n$$

- non smooth functions?
- non-analytic functions?
- radius of convergence?

Approximation Tools in Function Spaces

■ a class \mathcal{F} of functions, a reference norm $\|\cdot\|$, and a *computable* family $\mathcal{P} = (P_n)$ to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact interval.

Taylor expansions...

- monomial basis
- fast computations
- related to initial conditions

$$T_N(f)(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n$$

- non smooth functions?
- non-analytic functions?
- radius of convergence?

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_{n+2}(X)=2XT_{n+1}(X)-T_n(X).$$

$$T_0(X) = 1$$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_{n+2}(X)=2XT_{n+1}(X)-T_n(X).$$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_{n+2}(X)=2XT_{n+1}(X)-T_n(X).$$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_2(X) = 2X^2 - 1$$

$$T_0(X)=1,$$

$$T_1(X) = X$$

$$T_{n+2}(X)=2XT_{n+1}(X)-T_n(X).$$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_2(X) = 2X^2 - 1$$

$$T_3(X) = 4X^3 - 3X$$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_{n+2}(X)=2XT_{n+1}(X)-T_n(X).$$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_2(X) = 2X^2 - 1$$

$$T_3(X) = 4X^3 - 3X$$

$$T_4(X) = 8X^4 - 8X^2 + 1$$

$$T_0(X) = 1,$$
 $T_1(X) = X,$
 $T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X).$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_2(X) = 2X^2 - 1$$

$$T_3(X) = 4X^3 - 3X$$

$$T_4(X) = 8X^4 - 8X^2 + 1$$

$$T_5(X) = 16X^5 - 20X^3 + 5X$$

Chebyshev Family of Polynomials

$$T_0(X) = 1,$$

 $T_1(X) = X,$
 $T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X).$

Trigonometric Relation

$$T_n(\cos\vartheta) = \cos n\vartheta.$$

$$\Rightarrow \forall t \in [-1,1], |T_n(t)| \leq 1.$$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_2(X) = 2X^2 - 1$$

$$T_3(X) = 4X^3 - 3X$$

$$T_4(X) = 8X^4 - 8X^2 + 1$$

$$T_5(X) = 16X^5 - 20X^3 + 5X$$

Chebyshev Polynomials and Series

Chebyshev Family of Polynomials

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X).$$

Trigonometric Relation

 $T_n(\cos\vartheta) = \cos n\vartheta.$

$$\Rightarrow \forall t \in [-1,1], |T_n(t)| \leq 1.$$

Multiplication and Integration

- $T_n T_m = \frac{1}{2} (T_{n+m} + T_{n-m}).$

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_2(X) = 2X^2 - 1$$

$$T_3(X) = 4X^3 - 3X$$

$$T_4(X) = 8X^4 - 8X^2 + 1$$

$$T_5(X) = 16X^5 - 20X^3 + 5X$$

Scalar Product and Orthogonality Relations

Chebyshev Family of Polynomials

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X).$$

Trigonometric Relation

 $T_n(\cos\vartheta) = \cos n\vartheta.$

$$\Rightarrow \forall t \in [-1,1], |T_n(t)| \leq 1.$$

Multiplication and Integration

- $T_n T_m = \frac{1}{2} (T_{n+m} + T_{n-m}).$

$$\langle f,g\rangle = \int_{-1}^1 \frac{f(t)g(t)}{\sqrt{1-t^2}} \mathrm{d}t = \int_0^\pi f(\cos\vartheta)g(\cos\vartheta) \mathrm{d}\vartheta.$$

 $\Rightarrow (T_n)_{n\geq 0}$ orthogonal family.

Chebyshev Family of Polynomials

$$T_0(X) = 1$$

$$T_1(X) = X$$

$$T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X).$$

Trigonometric Relation

 $T_n(\cos \vartheta) = \cos n\vartheta.$

$$\Rightarrow \forall \, t \in [-1,1], |T_n(t)| \leq 1.$$

Multiplication and Integration

- $T_n T_m = \frac{1}{2} (T_{n+m} + T_{n-m}).$

Scalar Product and Orthogonality Relations

$$\langle f,g\rangle = \int_{-1}^1 \frac{f(t)g(t)}{\sqrt{1-t^2}} \mathrm{d}t = \int_0^\pi f(\cos\vartheta)g(\cos\vartheta) \mathrm{d}\vartheta.$$

 $\Rightarrow (T_n)_{n\geq 0}$ orthogonal family.

Chebyshev Coefficients and Series

- $a_n = \frac{1}{\pi} \int_0^{\pi} f(\cos \vartheta) \cos n\vartheta d\vartheta, \qquad n \in \mathbb{Z}.$
- $\widehat{f}^{[N]}(t) = \sum_{|n| \leq N} a_n T_n(t), \qquad t \in [-1, 1].$

Chebyshev Family of Polynomials

$$T_0(X) = 1,$$

$$T_1(X) = X$$

$$T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X).$$

Trigonometric Relation

$$T_n(\cos \vartheta) = \cos n\vartheta.$$

$$\Rightarrow \forall \, t \in [-1,1], |T_n(t)| \leq 1.$$

Multiplication and Integration

- $T_n T_m = \frac{1}{2} (T_{n+m} + T_{n-m}).$

Scalar Product and Orthogonality Relations

$$\langle f,g\rangle = \int_{-1}^1 \frac{f(t)g(t)}{\sqrt{1-t^2}} \mathrm{d}t = \int_0^\pi f(\cos\vartheta)g(\cos\vartheta) \mathrm{d}\vartheta.$$

 $\Rightarrow (T_n)_{n\geq 0}$ orthogonal family.

Chebyshev Coefficients and Series

- $a_n = \frac{1}{\pi} \int_0^{\pi} f(\cos \vartheta) \cos n\vartheta d\vartheta, \qquad n \in \mathbb{Z}.$
- $\widehat{f}^{[N]}(t) = \sum_{|n| \leq N} a_n T_n(t), \qquad t \in [-1, 1].$

Convergence Theorems

- If $f \in C^k$, $\widehat{f}^{[N]} \to f$ in $O(N^{-k})$.
- If f analytic, $\widehat{f}^{[N]} \to f$ exponentially fast.

Definition

A pair $(P,\varepsilon)\in\mathbb{R}[X]\times\mathbb{R}_+$ is a rigorous polynomial approximation (RPA) of f for a given norm $\|\cdot\|$ if $\|f-P\|\leq \varepsilon$.

Definition

A pair $(P,\varepsilon)\in\mathbb{R}[X]\times\mathbb{R}_+$ is a rigorous polynomial approximation (RPA) of f for a given norm $\|\cdot\|$ if $\|f-P\|\leq \varepsilon$.

Example: sup-norm over [-1,1]:

$$f \in (P, \varepsilon) \Leftrightarrow |f(t) - P(t)| \le \varepsilon \quad \forall t \in [-1, 1]$$

Definition

A pair $(P,\varepsilon)\in\mathbb{R}[X]\times\mathbb{R}_+$ is a rigorous polynomial approximation (RPA) of f for a given norm $\|\cdot\|$ if $\|f-P\|\leq \varepsilon$.

Example: sup-norm over [-1,1]:

$$f \in (P, \varepsilon) \Leftrightarrow |f(t) - P(t)| \le \varepsilon \quad \forall t \in [-1, 1]$$

Example:

$$r(t) = f(t) + g(t)$$

Some elementary operations:

$$(P,\varepsilon) + (Q,\eta) \coloneqq (P+Q,\varepsilon+\eta),$$

Definition

A pair $(P,\varepsilon)\in\mathbb{R}[X]\times\mathbb{R}_+$ is a rigorous polynomial approximation (RPA) of f for a given norm $\|\cdot\|$ if $\|f-P\|\leq \varepsilon$.

Example: sup-norm over [-1,1]:

$$f \in (P, \varepsilon) \Leftrightarrow |f(t) - P(t)| \le \varepsilon \quad \forall t \in [-1, 1]$$

Some elementary operations:

- $(P,\varepsilon) + (Q,\eta) \coloneqq (P+Q,\varepsilon+\eta),$
- $\bullet (P,\varepsilon)-(Q,\eta)\coloneqq (P-Q,\varepsilon+\eta),$

Example:

$$r(t) = f(t) + g(t) - h(t)$$

Definition

A pair $(P,\varepsilon)\in\mathbb{R}[X]\times\mathbb{R}_+$ is a rigorous polynomial approximation (RPA) of f for a given norm $\|\cdot\|$ if $\|f-P\|\leq \varepsilon$.

Example: sup-norm over [-1, 1]:

$$f \in (P, \varepsilon) \Leftrightarrow |f(t) - P(t)| \le \varepsilon \quad \forall t \in [-1, 1]$$

Some elementary operations:

- $(P,\varepsilon) + (Q,\eta) := (P + Q,\varepsilon + \eta),$
- $(P,\varepsilon)-(Q,\eta)\coloneqq (P-Q,\varepsilon+\eta),$
- $(P,\varepsilon)\cdot(Q,\eta)\coloneqq(PQ,\|Q\|\eta+\|P\|\varepsilon+\eta\varepsilon)$ provided that $\|fg\|\leq \|f\|\|g\|$,

Example: r(t) = k(t)(f(t) + g(t) - h(t))

Definition

A pair $(P,\varepsilon)\in\mathbb{R}[X]\times\mathbb{R}_+$ is a rigorous polynomial approximation (RPA) of f for a given norm $\|\cdot\|$ if $\|f-P\|\leq \varepsilon$.

Example: sup-norm over [-1, 1]:

$$f \in (P, \varepsilon) \Leftrightarrow |f(t) - P(t)| \le \varepsilon \quad \forall t \in [-1, 1]$$

Some elementary operations:

- $(P,\varepsilon) + (Q,\eta) := (P+Q,\varepsilon+\eta),$
- $(P,\varepsilon)-(Q,\eta)\coloneqq (P-Q,\varepsilon+\eta),$
- $(P,\varepsilon)\cdot(Q,\eta)\coloneqq(PQ,\|Q\|\eta+\|P\|\varepsilon+\eta\varepsilon)$ provided that $\|fg\|\leq\|f\|\|g\|$,
- $\int_0 (P, \varepsilon) := \left(\int_0^t P(s) ds, \varepsilon \right) \\
 \text{if } \| \cdot \| = \| \cdot \|_{\infty, \lceil -1, 1 \rceil}.$

Definition

A pair $(P,\varepsilon)\in\mathbb{R}[X]\times\mathbb{R}_+$ is a rigorous polynomial approximation (RPA) of f for a given norm $\|\cdot\|$ if $\|f-P\|\leq\varepsilon$.

Example: sup-norm over [-1,1]:

$$f \in (P, \varepsilon) \Leftrightarrow |f(t) - P(t)| \le \varepsilon \quad \forall t \in [-1, 1]$$

Some elementary operations:

- $(P,\varepsilon) + (Q,\eta) := (P + Q,\varepsilon + \eta),$
- $(P,\varepsilon)-(Q,\eta)\coloneqq (P-Q,\varepsilon+\eta),$
- $(P,\varepsilon)\cdot (Q,\eta)\coloneqq (PQ,\|Q\|\eta+\|P\|\varepsilon+\eta\varepsilon)$ provided that $\|fg\|\leq \|f\|\|g\|$,
- $\int_0 (P, \varepsilon) := \left(\int_0^t P(s) ds, \varepsilon \right) \\
 \text{if } \| \cdot \| = \| \cdot \|_{\infty, \lceil -1, 1 \rceil}.$

Outline

- 1 Introduction
- 2 Rigorous Polynomial Approximations
- 3 A Posteriori Validation with Fixed-Points
- 4 Validated Solutions of Linear Differential Equations
- 5 Conclusion and Future Work
- 6 Some Extras

Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation $\mathbf{T} \cdot x = x$ over metric space (X, d) and obtain x candidate approximation of exact solution x^* .

▶ Find **rigorous** error bound $||x - x^*||$.

Reformulate the problem as a fixed-point equation $\mathbf{T} \cdot x = x$ over metric space (X, d) and obtain x candidate approximation of exact solution x^* .

▶ Find rigorous error bound $||x - x^*||$.

Banach Fixed-Point Theorem

If (X, d) is complete and T contracting of ratio $\mu < 1$,

▶ Then T admits a unique fixed-point x^* ,

Reformulate the problem as a fixed-point equation $\mathbf{T} \cdot x = x$ over metric space (X, d) and obtain x candidate approximation of exact solution x^* .

Find rigorous error bound $||x - x^*||$.

Banach Fixed-Point Theorem

If (X, d) is complete and T contracting of ratio $\mu < 1$,

▶ Then **T** admits a unique fixed-point x^* ,

Reformulate the problem as a fixed-point equation $\mathbf{T} \cdot x = x$ over metric space (X, d) and obtain x candidate approximation of exact solution x^* .

Find rigorous error bound $||x - x^*||$.

Banach Fixed-Point Theorem

If (X, d) is complete and T contracting of ratio $\mu < 1$,

▶ Then T admits a unique fixed-point x^* ,

Reformulate the problem as a fixed-point equation $\mathbf{T} \cdot x = x$ over metric space (X, d) and obtain x candidate approximation of exact solution x^* .

▶ Find rigorous error bound $||x - x^*||$.

Banach Fixed-Point Theorem

If (X, d) is complete and T contracting of ratio $\mu < 1$,

▶ Then T admits a unique fixed-point x*,

Reformulate the problem as a fixed-point equation $\mathbf{T} \cdot x = x$ over metric space (X, d) and obtain x candidate approximation of exact solution x^* .

Find rigorous error bound $||x - x^*||$.

Banach Fixed-Point Theorem

If (X, d) is complete and T contracting of ratio $\mu < 1$,

▶ Then T admits a unique fixed-point x*,

Reformulate the problem as a fixed-point equation $\mathbf{T} \cdot x = x$ over metric space (X, d) and obtain x candidate approximation of exact solution x^* .

Find rigorous error bound $||x - x^*||$.

Banach Fixed-Point Theorem

If (X, d) is complete and T contracting of ratio $\mu < 1$,

- ▶ Then T admits a unique fixed-point x^* , and
- ▶ For all $x \in X$,

$$\frac{d(x,\mathbf{T}\cdot x)}{1+\mu} \leq d(x,x^*) \leq \frac{d(x,\mathbf{T}\cdot x)}{1-\mu}.$$

Reformulate the problem as a fixed-point equation $\mathbf{T} \cdot x = x$ over metric space (X, d) and obtain x candidate approximation of exact solution x^* .

Find rigorous error bound $||x - x^*||$.

Banach Fixed-Point Theorem

If (X, d) is complete and T contracting of ratio $\mu < 1$,

- ▶ Then T admits a unique fixed-point x*, and
- ▶ For all $x \in X$,

$$\frac{d(x,\mathbf{T}\cdot x)}{1+\mu} \leq d(x,x^*) \leq \frac{d(x,\mathbf{T}\cdot x)}{1-\mu}.$$

Quasi-Newton Method for $\mathbf{F} \cdot \mathbf{x} = \mathbf{0}$

Obtain $\mathbf{A} \approx (D\mathbf{F})^{-1}$ in order to define:

$$\mathbf{T} \cdot \mathbf{x} = \mathbf{x} - \mathbf{A} \cdot \mathbf{F} \cdot \mathbf{x}$$

Relative Motion in Keplerian Dynamics

$$z'' + \left(4 - \frac{3}{1 + e\cos\nu}\right)z = c$$

Relative Motion in Keplerian Dynamics

Reduced Equation

$$z'' + \left(4 - \frac{3}{1 + e\cos\nu}\right)z = c$$

To Do List

Approximate coefficient

Relative Motion in Keplerian Dynamics

Reduced Equation

$$z'' + \left(4 - \frac{3}{1 + e\cos\nu}\right)z = c$$

To Do List

- Approximate coefficient
- 2 Approximate solution with a Chebyshev series

Relative Motion in Keplerian Dynamics

Reduced Equation

$$z'' + \left(4 - \frac{3}{1 + e\cos\nu}\right)z = c$$

To Do List

- Approximate coefficient
- Approximate solution with a Chebyshev series
- Validate the obtained solution

Relative Motion in Keplerian Dynamics

$$z'' + \left(4 - \frac{3}{1 + e\cos\nu}\right)z = c$$

Relative Motion in Keplerian Dynamics

$$z'' + \left(4 - \frac{3}{1 + e\cos\nu}\right)z = c$$

Relative Motion in Keplerian Dynamics

$$z'' + \left(4 - \frac{3}{1 + e\cos\nu}\right)z = c$$

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

$$\checkmark$$
 RPA for $x \mapsto \cos x$:

$$0.77 T_0(x) - 0.23 T_2(x) + 0.005 T_4(x) \pm 4.2 \cdot 10^{-5}$$

${\sf Fixed-Point\ Based\ Validation}$

Application to Division

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

$$\checkmark$$
 RPA for $x \mapsto \cos x$:

$$0.77T_0(x) - 0.23T_2(x) + 0.005T_4(x) \pm 4.2 \cdot 10^{-5}$$

$$\checkmark$$
 RPA for $x \mapsto 1 + 0.5 \cos x$:

$$1.38\,T_0(x) - 0.11\,T_2(x) + 0.002\,T_4(x) \pm 2.1 \cdot 10^{-5}$$

Approximation of
$$x \mapsto 4 - \frac{3}{1 + e \cos x}$$

Application to Division

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

Application to Division

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

$$\varphi = 0.73 T_0(x) + 0.06 T_2(x) \approx 1/(1+0.5\cos x)$$

Application to Division

÷

Division: g/f ($f \neq 0$)

► Solve
$$\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g} = 0$$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

$$\varphi = 0.73 T_0(x) + 0.06 T_2(x) \approx 1/(1 + 0.5 \cos x)$$

Application to Division

Division: g/f ($f \neq 0$)

Solve
$$\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g} = 0$$

$$(\mathbf{DF})_{\varphi} \cdot h = fh \qquad (\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0(\mathbf{f}\varphi - \mathbf{g})$

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

$$\varphi = 0.73 T_0(x) + 0.06 T_2(x) \approx 1/(1+0.5\cos x)$$

Application to Division

÷

Division: g/f ($f \neq 0$)

Solve
$$\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g} = 0$$

$$(\mathbf{DF})_{\varphi} \cdot h = fh \qquad (\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0(f\varphi - g)$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

$$\varphi = 0.73 T_0(x) + 0.06 T_2(x) \approx 1/(1 + 0.5 \cos x)$$

Fixed-Point Based Validation

Application to Division

Division: g/f ($f \neq 0$)

▶ Solve
$$\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g} = 0$$

$$(\mathbf{DF})_{\varphi} \cdot h = fh \qquad (\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi}$$
 $\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi} - f_0(f\boldsymbol{\varphi} - g)$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

✓ Approximation of $x \mapsto 1/(1 + 0.5 \cos x)$:

$$\varphi = 0.73 T_0(x) + 0.06 T_2(x) \approx 1/(1+0.5\cos x)$$

$$\mu = 3.7 \cdot 10^{-3} << 1$$

${\sf Fixed-Point\ Based\ Validation}$

Application to Division

÷

Division: g/f ($f \neq 0$)

Solve
$$\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g} = 0$$

$$(\mathbf{DF})_{\varphi} \cdot h = fh \qquad (\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0(f\varphi - g)$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\left\|f_0\big(f\varphi-g\big)\right\|}{1+\mu}\leq \left\|\varphi-\frac{g}{f}\right\|\leq \frac{\left\|f_0\big(f\varphi-g\big)\right\|}{1-\mu}$$

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

✓ Approximation of $x \mapsto 1/(1 + 0.5 \cos x)$:

$$\varphi = 0.73 T_0(x) + 0.06 T_2(x) \approx 1/(1+0.5\cos x)$$

$$\mu = 3.7 \cdot 10^{-3} << 1$$

 $\sqrt{\text{RPA for } x \mapsto 1/(1 + 0.5 \cos x)}$:

$$0.73T_0(x) + 0.06T_2(x) \pm 1.3 \cdot 10^{-3}$$

${\sf Fixed-Point\ Based\ Validation}$

Application to Division

÷

Division: g/f ($f \neq 0$)

▶ Solve $\mathbf{F} \cdot \varphi = f \varphi - g = 0$

$$(\mathrm{D}\mathbf{F})_{\varphi} \cdot h = fh \qquad (\mathrm{D}\mathbf{F})_{\varphi}^{-1} \cdot h = f^{-1}h$$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0(\mathbf{f}\varphi - \mathbf{g})$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\left\|f_0\big(f\varphi-g\big)\right\|}{1+\mu}\leq \left\|\varphi-\frac{g}{f}\right\|\leq \frac{\left\|f_0\big(f\varphi-g\big)\right\|}{1-\mu}$$

Approximation of $x \mapsto 4 - \frac{3}{1 + e \cos x}$

✓ Approximation of $x \mapsto 1/(1 + 0.5 \cos x)$:

$$\varphi = 0.73 T_0(x) + 0.06 T_2(x) \approx 1/(1 + 0.5 \cos x)$$

$$\mu = 3.7 \cdot 10^{-3} << 1$$

✓ RPA for
$$x \mapsto 1/(1 + 0.5 \cos x)$$
:

$$0.73T_0(x) + 0.06T_2(x) \pm 1.3 \cdot 10^{-3}$$

$$\checkmark$$
 RPA for $x \mapsto 4 - 3/(1 + 0.5 \cos x)$:

$$1.82T_0(x) - 0.18T_2(x) \pm 3.8 \cdot 10^{-3}$$

Outline

- 1 Introduction
- 2 Rigorous Polynomial Approximation:
- 3 A Posteriori Validation with Fixed-Points
- 4 Validated Solutions of Linear Differential Equations
- 5 Conclusion and Future Work
- 6 Some Extra

LODE and Initial Value Problem

$$y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

 $t \in [-1,1]$ α_i, g sufficiently regular (\mathcal{C}^0 , RPA, polynomial)

LODE and Initial Value Problem

$$y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

 $t \in [-1,1]$ α_i, g sufficiently regular (\mathcal{C}^0 , RPA, polynomial)

Integral Reformulation

$$\varphi + \mathbf{K} \cdot \varphi = \psi, \tag{I}$$

LODE and Initial Value Problem

$$y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

 $t \in [-1,1]$ α_i, g sufficiently regular (\mathcal{C}^0 , RPA, polynomial)

Integral Reformulation

$$\varphi + \mathbf{K} \cdot \varphi = \psi, \tag{I}$$

•
$$\mathbf{K} \cdot \varphi(t) = \sum_{j=0}^{r-1} \beta_j(t) \int_{-1}^t T_j(s) \varphi(s) ds$$

LODE and Initial Value Problem

$$y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

 $t \in [-1,1]$ α_i, g sufficiently regular (\mathcal{C}^0 , RPA, polynomial)

Integral Reformulation

$$\varphi + \mathbf{K} \cdot \varphi = \psi, \tag{I}$$

■
$$\mathbf{K} \cdot \varphi(t) = \sum_{j=0}^{r-1} \beta_j(t) \int_{-1}^t T_j(s) \varphi(s) ds \Rightarrow \text{compact operator}$$

LODE and Initial Value Problem

$$y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

 $t \in [-1,1]$ α_i, g sufficiently regular (\mathcal{C}^0 , RPA, polynomial)

Integral Reformulation

$$\varphi + \mathbf{K} \cdot \varphi = \psi, \tag{I}$$

- $\mathbf{K} \cdot \varphi(t) = \sum_{j=0}^{r-1} \beta_j(t) \int_{-1}^t T_j(s) \varphi(s) ds \Rightarrow \text{compact operator}$
- $\psi(t) = g(t) + \text{(some function depending on the } v_j\text{'s)}$

LODE and Initial Value Problem

$$y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

 $t \in [-1,1]$ α_i, g sufficiently regular (\mathcal{C}^0 , RPA, polynomial)

Integral Reformulation

Let $\varphi = y^{(r)}$, (D) becomes:

$$\varphi + \mathbf{K} \cdot \varphi = \psi, \tag{I}$$

- $\mathbf{K} \cdot \varphi(t) = \sum_{j=0}^{r-1} \beta_j(t) \int_{-1}^t T_j(s) \varphi(s) ds \Rightarrow \text{compact operator}$
- $\psi(t) = g(t) + \text{(some function depending on the } v_j\text{'s)}$

Theorem (Picard-Lindelöf)

(I) (and hence (D)) has a unique solution.

Matrix Representation in Chebyshev Basis

The infinite-dimensional operator K.

Matrix Representation in Chebyshev Basis

The finite-dimensional truncation $\mathbf{K}^{[\mathit{N}]}.$

Example with Tschauner-Hempel Equation

$$\mathbf{K} \cdot \varphi = t \left(4 - \frac{3}{1 + e \cos t} \right) \int_{t_0}^t \varphi(s) \mathrm{d}s + \left(-4 + \frac{3}{1 + e \cos t} \right) \int_{t_0}^t s \varphi(s) \mathrm{d}s$$

Example with Tschauner-Hempel Equation

$$\mathbf{K} \cdot \boldsymbol{\varphi} \approx t \big(1.82 - 0.18\,T_2(t)\big) \int_{t_0}^t \boldsymbol{\varphi}(s) \mathrm{d}s + \big(-1.82 + 0.18\,T_2(t)\big) \int_{t_0}^t s \boldsymbol{\varphi}(s) \mathrm{d}s$$

$$\mathbf{K} \cdot \varphi \approx \underbrace{\left(1.73 T_1(t) - 0.09 T_3(t)\right)}_{\beta_0(t)} \int_{t_0}^t \varphi(s) \mathrm{d}s + \underbrace{\left(-1.82 + 0.18 T_2(t)\right)}_{\beta_1(t)} \int_{t_0}^t s \varphi(s) \mathrm{d}s$$

$$\mathbf{K} \cdot \varphi \approx \underbrace{\left(1.73 T_1(t) - 0.09 T_3(t)\right)}_{\beta_0(t)} \int_{t_0}^t \varphi(s) \mathrm{d}s + \underbrace{\left(-1.82 + 0.18 T_2(t)\right)}_{\beta_1(t)} \int_{t_0}^t s \varphi(s) \mathrm{d}s$$

• We want to solve $z''(t) + \left(4 - \frac{3}{1+0.5\cos t}\right)z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.

- We want to solve $z''(t) + \left(4 \frac{3}{1 + 0.5\cos t}\right)z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- Equivalent to $(\mathbf{I} + \mathbf{K}) \cdot \varphi = \psi$ where $\varphi = \mathbf{z''}$.

- We want to solve $z''(t) + \left(4 \frac{3}{1+0.5\cos t}\right)z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- ≈ Equivalent to $(\mathbf{I} + \mathbf{K}^{[N]}) \cdot \varphi = \psi$ where $\varphi = \mathbf{z}''$.

- We want to solve $z''(t) + \left(4 \frac{3}{1 + 0.5\cos t}\right)z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- ≈ Equivalent to $(\mathbf{I} + \mathbf{K}^{[N]}) \cdot \varphi = \psi$ where $\varphi = z''$.
- We have a matrix representation of $\mathbf{I} + \mathbf{K}^{[N]}$.

- We want to solve $z''(t) + \left(4 \frac{3}{1 + 0.5\cos t}\right)z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- ≈ Equivalent to $(\mathbf{I} + \mathbf{K}^{[N]}) \cdot \varphi = \psi$ where $\varphi = \mathbf{z}''$.
- We have a matrix representation of $\mathbf{I} + \mathbf{K}^{[N]}$.
- $\psi \approx -0.82 T_0 1.73 T_1 + 0.18 T_2 + 0.09 T_3.$

- We want to solve $z''(t) + \left(4 \frac{3}{1 + 0.5\cos t}\right)z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- ≈ Equivalent to $(\mathbf{I} + \mathbf{K}^{[N]}) \cdot \varphi = \psi$ where $\varphi = \mathbf{z}''$.
- We have a matrix representation of $I + K^{[N]}$.
- $\psi \approx -0.82 T_0 1.73 T_1 + 0.18 T_2 + 0.09 T_3.$
- Hence, by inverting the linear system, we get:

- We want to solve $z''(t) + \left(4 \frac{3}{1 + 0.5 \cos t}\right) z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- ≈ Equivalent to $(\mathbf{I} + \mathbf{K}^{[N]}) \cdot \varphi = \psi$ where $\varphi = z''$.
- We have a matrix representation of $\mathbf{I} + \mathbf{K}^{[N]}$.
- $\psi \approx -0.82 T_0 1.73 T_1 + 0.18 T_2 + 0.09 T_3$.
- Hence, by inverting the linear system, we get:

$$\begin{split} \varphi &= -0.6T_0 - 1.19T_1 + 0.62T_2 + 0.17T_3 - 0.05T_4 - 0.01T_5 \\ &+ 2.1 \cdot 10^{-3}T_6 + 3.2 \cdot 10^{-3}T_7 - 5.8 \cdot 10^{-5}T_8 - 7.6 \cdot 10^{-6}T_9 + 1.2 \cdot 10^{-6}T_{10} \\ &+ 1.4 \cdot 10^{-7}T_{11} - 1.9 \cdot 10^{-8}T_{12} - 2.0 \cdot 10^{-9}T_{13} + 2.6 \cdot 10^{-10}T_{14} + 2.5 \cdot 10^{-11}T_{15} \\ &- 3.0 \cdot 10^{-12}T_{16} - 2.6 \cdot 10^{-13}T_{17} + 3.0 \cdot 10^{-14}T_{18} + 2.5 \cdot 10^{-15}T_{19} - 2.6 \cdot 10^{-16}T_{20} \end{split}$$

Designing the Newton-like Operator ${f T}$

Construct T: To-Do List

■ Truncation order *N*.

- Truncation order *N*.
- Approx inverse:

$$\mathbf{A} \approx (\mathbf{I} + \mathbf{K})^{-1}$$

- Truncation order *N*.
- Approx inverse:

$$\boldsymbol{A} \approx \big(\boldsymbol{I} + \boldsymbol{K^{\text{[N]}}}\big)^{-1}$$

- Truncation order *N*.
- Approx inverse:

$$\mathbf{A} \approx \left(\mathbf{I} + \mathbf{K}^{\text{[N]}}\right)^{-1}$$

Decomposition of the Operator Norm

$$\|\mathbf{D}\mathbf{T}\| = \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\| \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\| + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|.$$

- Truncation order *N*.
- Approx inverse:

$$\mathbf{A} \approx (\mathbf{I} + \mathbf{K}^{[N]})^{-1}$$

Decomposition of the Operator Norm

$$\|\mathbf{D}\mathbf{T}\| = \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\| \leq \underbrace{\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|}_{\text{Approximation error}} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|.$$

- Truncation order N.
- Approx inverse:

$$\mathbf{A} \approx (\mathbf{I} + \mathbf{K}^{[N]})^{-1}$$

Decomposition of the Operator Norm

$$\|\mathbf{D}\mathbf{T}\| = \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\| \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\| + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|.$$
Approximation error
Truncation error

- Truncation order *N*.
- Approx inverse:

$$\mathbf{A} \approx (\mathbf{I} + \mathbf{K}^{[N]})^{-1}$$

Decomposition of the Operator Norm

$$\|\mathbf{D}\mathbf{T}\| = \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\| \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\| + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|.$$

Approximation error:

- Involves basic arithmetic operations on matrices:
 - Multiplication
 - Addition
 - 1-norm

- Truncation order *N*.
- Approx inverse:

$$\mathbf{A} \approx (\mathbf{I} + \mathbf{K}^{[N]})^{-1}$$

Decomposition of the Operator Norm

$$\|\mathbf{D}\mathbf{T}\| = \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\| \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\| + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|.$$

Approximation error:

- Involves basic arithmetic operations on matrices:
 - Multiplication
 - Addition
 - 1-norm

Truncation error:

Determines the minimal value of N we can choose.

$$\mathbf{L} \cdot y = y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

Rigorous Solving - Overview

- Integral reformulation: $\varphi + \mathbf{K} \cdot \varphi = \psi$ with $\varphi = y^{(r)}$,
- **2** Numerical solving: approximation φ of φ^* ,
- **3** Creating Newton-like operator: $\mathbf{T} \cdot \varphi = \varphi$,
- Obtaining $\mu \geq \|D\mathbf{T}\|$,
- 5 If $\mu < 1$, $\|\varphi \varphi^*\| \le \varepsilon := \|\varphi \mathbf{T} \cdot \varphi\|/(1 \mu)$,
- **1** Integrate RPA (φ, ε) r times with initial conditions to obtain a RPA for y^* .

$$\mathbf{L} \cdot y = y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

Rigorous Solving - Overview

- Integral reformulation: $\varphi + \mathbf{K} \cdot \varphi = \psi$ with $\varphi = y^{(r)}$,
- 2 Numerical solving: approximation φ of φ^* ,
- **3** Creating Newton-like operator: $\mathbf{T} \cdot \varphi = \varphi$,
- Obtaining $\mu \geq \|D\mathbf{T}\|$,
- 5 If $\mu < 1$, $\|\varphi \varphi^*\| \le \varepsilon := \|\varphi \mathbf{T} \cdot \varphi\|/(1 \mu)$,
- **1** Integrate RPA (φ, ε) r times with initial conditions to obtain a RPA for y^* .
- ▶ Extension of the method to RPA coefficients $\alpha_i = (\tilde{\alpha}_i, \varepsilon_i)$

$$\mathbf{L} \cdot y = y^{(r)}(t) + \alpha_{r-1}(t)y^{(r-1)}(t) + \dots + \alpha_1(t)y'(t) + \alpha_0(t)y(t) = g(t)$$

$$y(-1) = v_0 \qquad y'(-1) = v_1 \qquad \dots \qquad y^{(r-1)}(-1) = v_{r-1}$$
(D)

Rigorous Solving - Overview

- Integral reformulation: $\varphi + \mathbf{K} \cdot \varphi = \psi$ with $\varphi = y^{(r)}$,
- Numerical solving: approximation φ of φ^* ,
- **3** Creating Newton-like operator: $\mathbf{T} \cdot \varphi = \varphi$,
- Obtaining $\mu \geq \|\mathbf{DT}\|$,
- 5 If $\mu < 1$, $\|\varphi \varphi^*\| \le \varepsilon := \|\varphi \mathbf{T} \cdot \varphi\|/(1 \mu)$,
- **Integrate** RPA (φ, ε) r times with initial conditions to obtain a RPA for y^* .
- ▶ Extension of the method to RPA coefficients $\alpha_i = (\tilde{\alpha}_i, \varepsilon_i)$
- ► Extension to *Boundary Value Problems* (BVP)

Solution to Tschauner and Hempel Equations

Bring our Example to the End

■ Approximation error $\leq 1.5 \cdot 10^{-3}$.

- Approximation error $\leq 1.5 \cdot 10^{-3}$.
- Truncation error $\leq 1.21 \cdot 10^{-2}$.

- Approximation error $\leq 1.5 \cdot 10^{-3}$.
- Truncation error $\leq 1.21 \cdot 10^{-2}$.
- $\mu \le 1.5 \cdot 10^{-3} + 1.21 \cdot 10^{-2}$

- Approximation error $\leq 1.5 \cdot 10^{-3}$.
- Truncation error $\leq 1.21 \cdot 10^{-2}$.
- $\mu \le 1.5 \cdot 10^{-3} + 1.21 \cdot 10^{-2} = 1.36 \cdot 10^{-2}$.

- Approximation error $\leq 1.5 \cdot 10^{-3}$.
- Truncation error $\leq 1.21 \cdot 10^{-2}$.
- $\mu \le 1.5 \cdot 10^{-3} + 1.21 \cdot 10^{-2} = 1.36 \cdot 10^{-2}$.
- $\|\mathbf{T} \cdot \varphi \varphi\| = \|\mathbf{A}(\varphi + \mathbf{K} \cdot \varphi \psi)\| = 6.48 \cdot 10^{-16}.$

- Approximation error $\leq 1.5 \cdot 10^{-3}$.
- Truncation error $\leq 1.21 \cdot 10^{-2}$.
- $\mu \le 1.5 \cdot 10^{-3} + 1.21 \cdot 10^{-2} = 1.36 \cdot 10^{-2}$.
- $\|\mathbf{T} \cdot \varphi \varphi\| = \|\mathbf{A}(\varphi + \mathbf{K} \cdot \varphi \psi)\| = 6.48 \cdot 10^{-16}.$
- Hence:

$$\frac{6.48 \cdot 10^{-16}}{1 + \textcolor{red}{\mu}} \hspace{1cm} \leq \hspace{1cm} \| \varphi - \varphi^* \| \hspace{1cm} \leq \hspace{1cm} \frac{6.48 \cdot 10^{-16}}{1 - \textcolor{red}{\mu}}$$

- Approximation error $\leq 1.5 \cdot 10^{-3}$.
- Truncation error $\leq 1.21 \cdot 10^{-2}$.
- $\mu \le 1.5 \cdot 10^{-3} + 1.21 \cdot 10^{-2} = 1.36 \cdot 10^{-2}$
- $\|\mathbf{T} \cdot \varphi \varphi\| = \|\mathbf{A}(\varphi + \mathbf{K} \cdot \varphi \psi)\| = 6.48 \cdot 10^{-16}.$
- Hence:

$$6.39 \cdot 10^{-16}$$

$$\|\varphi - \varphi^*\|$$

$$\leq \|\varphi - \varphi^*\| \leq 6.57 \cdot 10^{-16}$$

- Approximation error $\leq 1.5 \cdot 10^{-3}$.
- Truncation error $\leq 1.21 \cdot 10^{-2}$.
- $\mu \le 1.5 \cdot 10^{-3} + 1.21 \cdot 10^{-2} = 1.36 \cdot 10^{-2}$.
- $\|\mathbf{T} \cdot \varphi \varphi\| = \|\mathbf{A}(\varphi + \mathbf{K} \cdot \varphi \psi)\| = 6.48 \cdot 10^{-16}.$
- Hence:

$$6.39 \cdot 10^{-16}$$
 $\leq \|\varphi - \varphi^*\| \leq 6.57 \cdot 10^{-16}$

$$\|\varphi - \varphi^*\|$$

$$6.57 \cdot 10^{-16}$$

Take into account approximation error of coefficient!

Outline

- 1 Introduction
- 2 Rigorous Polynomial Approximations
- 3 A Posteriori Validation with Fixed-Points
- 4 Validated Solutions of Linear Differential Equations
- 5 Conclusion and Future Work
- 6 Some Extras

A general framework for an arithmetic of RPAs in Chebyshev basis.

- A general framework for an arithmetic of RPAs in Chebyshev basis.
- An efficient algorithm to compute RPAs for LODEs:
 - Coefficients represented by RPAs.
 - Extension to the vectorial case + a **new** fixed-point theorem for vector-valued problems.

- A general framework for an arithmetic of RPAs in Chebyshev basis.
- An efficient algorithm to compute RPAs for LODEs:
 - Coefficients represented by RPAs.
 - Extension to the vectorial case + a new fixed-point theorem for vector-valued problems.
- Future directions:

- A general framework for an arithmetic of RPAs in Chebyshev basis.
- An efficient algorithm to compute RPAs for LODEs:
 - Coefficients represented by RPAs.
 - lacktriangle Extension to the vectorial case + a $rac{ ext{new}}{ ext{fixed-point}}$ theorem for vector-valued problems.
- Future directions:
 - Non-linear ODEs.

- A general framework for an arithmetic of RPAs in Chebyshev basis.
- An efficient algorithm to compute RPAs for LODEs:
 - Coefficients represented by RPAs.
 - lacktriangle Extension to the vectorial case + a $\begin{subarray}{l} \textbf{new} \\ \textbf{fixed-point} \\ \textbf{theorem for vector-valued problems.} \\ \end{subarray}$
- Future directions:
 - Non-linear ODEs.
 - Other orthogonal families of polynomials.

- A general framework for an arithmetic of RPAs in Chebyshev basis.
- An efficient algorithm to compute RPAs for LODEs:
 - Coefficients represented by RPAs.
 - lacktriangle Extension to the vectorial case + a $\begin{subarray}{l} \textbf{new} \\ \textbf{fixed-point} \\ \textbf{theorem for vector-valued problems.} \\ \end{subarray}$
- Future directions:
 - Non-linear ODEs.
 - Other orthogonal families of polynomials.
- A CoQ implementation.

Outline

- 1 Introduction
- 2 Rigorous Polynomial Approximations
- 3 A Posteriori Validation with Fixed-Points
- 4 Validated Solutions of Linear Differential Equations
- 5 Conclusion and Future Work
- 6 Some Extras

Division: g/f ($f \neq 0$)

▶ Solve $\mathbf{F} \cdot \varphi = f \varphi - g = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

Division: g/f ($f \neq 0$)

▶ Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0(f\varphi - g)$

Division: g/f ($f \neq 0$)

► Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0(f\varphi - g)$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$\label{eq:Application} \mbox{Application to Division and Square Root}$

Division: g/f ($f \neq 0$)

▶ Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0 (f \varphi - g)$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\left\|f_0\big(f\varphi-g\big)\right\|}{1+\mu}\leq \left\|\varphi-\frac{g}{f}\right\|\leq \frac{\left\|f_0\big(f\varphi-g\big)\right\|}{1-\mu}$$

Application to Division and Square Root

Division: g/f ($f \neq 0$)

▶ Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = \boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{\varrho} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = \mathbf{f}h$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = \mathbf{f}^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi}$$
 $\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi} - f_0(\boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g})$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\left\|f_0(f\varphi-g)\right\|}{1+\mu}\leq \left\|\varphi-\frac{g}{f}\right\|\leq \frac{\left\|f_0(f\varphi-g)\right\|}{1-\mu}$$

Square Root: \sqrt{f} (f > 0)

Solve $\mathbf{F} \cdot \varphi = \varphi^2 - f = 0$ Two solutions!

$$(\mathbf{DF})_{\varphi} \cdot h = 2\varphi h$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = \frac{\varphi^{-1}}{2} h$

Application to Division and Square Root

Division: g/f ($f \neq 0$)

Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = f \boldsymbol{\varphi} - \boldsymbol{\varrho} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0(f\varphi - g)$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\left\|f_0(f\varphi-g)\right\|}{1+\mu}\leq \left\|\varphi-\frac{g}{f}\right\|\leq \frac{\left\|f_0(f\varphi-g)\right\|}{1-\mu}$$

Square Root: \sqrt{f} (f > 0)

Solve $\mathbf{F} \cdot \varphi = \varphi^2 - f = 0$ Two solutions!

$$(\mathbf{DF})_{\varphi} \cdot h = 2\varphi h$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = \frac{\varphi^{-1}}{2} h$

▶ Use $f_0 \approx \varphi^{-1}$ (≈ $1/\sqrt{f}$):

$$\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi}$$
 $\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi} - \frac{\mathbf{f}_0}{2} (\boldsymbol{\varphi}^2 - \mathbf{f})$

Application to Division and Square Root

Division: g/f ($f \neq 0$)

Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = f \boldsymbol{\varphi} - \boldsymbol{\varrho} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi}$$
 $\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi} - f_0(\boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g})$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\left\|f_0(f\varphi-g)\right\|}{1+\mu}\leq \left\|\varphi-\frac{g}{f}\right\|\leq \frac{\left\|f_0(f\varphi-g)\right\|}{1-\mu}$$

Square Root: \sqrt{f} (f > 0)

Solve $\mathbf{F} \cdot \varphi = \varphi^2 - f = 0$ Two solutions!

$$(\mathbf{DF})_{\varphi} \cdot h = 2\varphi h$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = \frac{\varphi^{-1}}{2} h$

▶ Use $f_0 \approx \varphi^{-1}$ (≈ $1/\sqrt{f}$):

$$\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi}$$
 $\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi} - \frac{f_0}{2} (\boldsymbol{\varphi}^2 - \boldsymbol{f})$

▶ **T** non-linear, $\|(\mathbf{DT})_{\varphi}\| = \|1 - f_{\varphi}\|$.

Application to Division and Square Root

Division: g/f ($f \neq 0$)

Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = f \boldsymbol{\varphi} - \boldsymbol{\varrho} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0 (f \varphi - g)$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\left\|f_0(f\varphi-g)\right\|}{1+\mu}\leq \left\|\varphi-\frac{g}{f}\right\|\leq \frac{\left\|f_0(f\varphi-g)\right\|}{1-\mu}$$

Square Root: \sqrt{f} (f > 0)

Solve $\mathbf{F} \cdot \varphi = \varphi^2 - f = 0$ Two solutions!

$$(\mathbf{DF})_{\varphi} \cdot h = 2\varphi h$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = \frac{\varphi^{-1}}{2} h$

▶ Use $f_0 \approx \varphi^{-1}$ (≈ $1/\sqrt{f}$):

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - \frac{f_0}{2} (\varphi^2 - f)$

▶ **T** non-linear, $\|(\mathbf{DT})_{\varphi}\| = \|1 - f_{0}\varphi\|$.

$$\exists r > 0 \cdot \mathbf{T} : \overline{B}(\varphi, r) \to \overline{B}(\varphi, r)$$
?

$$\|\mathbf{T} \cdot \boldsymbol{\varphi} - \boldsymbol{\varphi}\| + r \sup_{\psi \in \overline{B}(\boldsymbol{\varphi}, r)} \|(\mathbf{D}\mathbf{T})_{\psi}\| < r$$

dessin inclusion boule image

Application to Division and Square Root

Division: g/f ($f \neq 0$)

Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = f \boldsymbol{\varphi} - \boldsymbol{\varrho} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - f_0 (\mathbf{f} \varphi - \mathbf{g})$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\|f_0(f\varphi-g)\|}{1+\mu} \leq \|\varphi-\frac{g}{f}\| \leq \frac{\|f_0(f\varphi-g)\|}{1-\mu}$$

dessin inclusion boule image

Square Root: \sqrt{f} (f > 0)

Solve $\mathbf{F} \cdot \varphi = \varphi^2 - f = 0$ Two solutions!

$$(\mathbf{DF})_{\varphi} \cdot h = 2\varphi h$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = \frac{\varphi^{-1}}{2} h$

▶ Use $f_0 \approx \varphi^{-1}$ (≈ $1/\sqrt{f}$):

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - \frac{f_0}{2} (\varphi^2 - f)$

▶ **T** non-linear, $\|(\mathbf{DT})_{\varphi}\| = \|1 - f_{0}\varphi\|$.

$$\exists r > 0 \cdot \mathbf{T} : \overline{B}(\varphi, r) \to \overline{B}(\varphi, r)$$
?

$$\|\mathbf{T} \cdot \boldsymbol{\varphi} - \boldsymbol{\varphi}\| + r \sup_{\psi \in \overline{B}(\boldsymbol{\varphi}, r)} \|(\mathbf{D}\mathbf{T})_{\psi}\| < r$$

- ▶ Check $\Delta > 0$ \rightarrow $0 < r_{min} < r_{max}$.
- ► Check $\mu = \|1 f_0 \varphi\| + \|f_0\|_{r_{\min}} < 1$.

Application to Division and Square Root

Division: g/f ($f \neq 0$)

Solve $\mathbf{F} \cdot \boldsymbol{\varphi} = f \boldsymbol{\varphi} - \boldsymbol{\varrho} = 0$

$$(\mathbf{DF})_{\varphi} \cdot h = fh$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = f^{-1}h$

▶ Use $f_0 \approx f^{-1}$:

$$\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi}$$
 $\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi} - f_0 (\boldsymbol{f} \boldsymbol{\varphi} - \boldsymbol{g})$

▶ **T** affine, $\mu = \|D\mathbf{T}\| = \|1 - f_0 f\| < 1$?

$$\frac{\|f_0(f\varphi-g)\|}{1+\mu} \leq \|\varphi-\frac{g}{f}\| \leq \frac{\|f_0(f\varphi-g)\|}{1-\mu}$$

dessin inclusion boule image

Square Root: \sqrt{f} (f > 0)

Solve $\mathbf{F} \cdot \varphi = \varphi^2 - f = 0$ Two solutions!

$$(\mathbf{DF})_{\varphi} \cdot h = 2\varphi h$$
 $(\mathbf{DF})_{\varphi}^{-1} \cdot h = \frac{\varphi^{-1}}{2} h$

▶ Use $f_0 \approx \varphi^{-1}$ (≈ $1/\sqrt{f}$):

$$\mathbf{T} \cdot \varphi = \varphi$$
 $\mathbf{T} \cdot \varphi = \varphi - \frac{t_0}{2} (\varphi^2 - f)$

▶ **T** non-linear, $\|(\mathbf{DT})_{\varphi}\| = \|1 - f_{0}\varphi\|$.

$$\exists r > 0 \cdot \mathbf{T} : \overline{B}(\varphi, r) \to \overline{B}(\varphi, r)$$
?

$$\|\mathbf{T} \cdot \boldsymbol{\varphi} - \boldsymbol{\varphi}\| + r \sup_{\psi \in \overline{B}(\boldsymbol{\varphi}, r)} \|(\mathbf{D}\mathbf{T})_{\psi}\| < r$$

- ▶ Check $\Delta > 0$ \rightarrow $0 < r_{min} < r_{max}$.
- ► Check $\mu = \|1 f_0 \varphi\| + \|f_0\|_{r_{\min}} < 1$.

$$\frac{\|f_0(\varphi^2 - f)/2\|}{1 + \mu} \le \|\varphi - \sqrt{f}\| \le \frac{\|f_0(\varphi^2 - f)/2\|}{1 - \mu}$$

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\|=\sup_{i\geq 0}\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot T_i\|$$

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\|=\sup_{i\geq 0}\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot\mathcal{T}_i\|$$

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\|=\sup_{i\geq 0}\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot\mathcal{T}_i\|$$

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\|=\sup_{i\geq 0}\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot\mathcal{T}_i\|$$

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\|=\sup_{i\geq 0}\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot\mathcal{T}_i\|$$

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\| = \sup_{i\geq 0} \|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot T_i\|$$

Direct computation.

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\| = \sup_{i\geq 0} \|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot T_i\|$$

- Direct computation.
- Direct computation.

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\| = \sup_{i\geq 0} \|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot T_i\|$$

- Direct computation.
- Direct computation.
- Bound the remaining *infinite* number of columns:

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\| = \sup_{i\geq 0} \|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot T_i\|$$

- Direct computation.
- Direct computation.
- Bound the remaining *infinite* number of columns:
 - Using the bounds in 1/i and $1/i^2$: possibly large overestimations.

$$diag(i) \le \frac{C}{i} \quad init(i) \le \frac{D}{i^2}$$

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\| = \sup_{i\geq 0} \|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot T_i\|$$

- Direct computation.
- Direct computation.
- Bound the remaining *infinite* number of columns:
 - Using the bounds in 1/i and $1/i^2$: possibly large overestimations.

$$diag(i) \le \frac{C}{i} \quad init(i) \le \frac{D}{i^2}$$

 Using a first order difference method: differences in 1/i² and 1/i⁴.

$$diag(i) \le diag(i_0) + \frac{C'}{i^2}$$

 $init(i) \le init(i_0) + \frac{D'}{i^4}$

$$\|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\| = \sup_{i\geq 0} \|\mathbf{A}\cdot(\mathbf{K}-\mathbf{K}^{[N]})\cdot\mathcal{T}_i\|$$

- Direct computation.
- Direct computation.
- Bound the remaining infinite number of columns:
 - Using the bounds in 1/i and $1/i^2$: possibly large overestimations.

$$diag(i) \le \frac{C}{i} \quad init(i) \le \frac{D}{i^2}$$

 Using a first order difference method: differences in $1/i^2$ and $1/i^{4}$.

$$diag(i) \le diag(i_0) + \frac{C'}{i^2}$$

 $init(i) \le init(i_0) + \frac{D'}{i^4}$

Coupled LODEs and Initial Value Problem

$$Y^{(r)}(t) + A_{r-1}(t) \cdot Y^{(r-1)}(t) + \dots + A_{1}(t) \cdot Y'(t) + A_{0}(t) \cdot Y(t) = G(t) \qquad (p-D)$$

$$A_{k}(t) = \begin{pmatrix} a_{k11}(t) & \dots & a_{k1p}(t) \\ \vdots & \ddots & \vdots \\ a_{kp1}(t) & \dots & a_{kpp}(t) \end{pmatrix} \qquad G(t) = \begin{pmatrix} g_{1}(t) \\ \vdots \\ g_{p}(t) \end{pmatrix}$$

$$t \in [-1, 1] \qquad Y_{i}^{(k)}(-1) = v_{ik} \qquad i \in [1, p], k \in [0, r-1]$$

Coupled LODEs and Initial Value Problem

$$Y^{(r)}(t) + A_{r-1}(t) \cdot Y^{(r-1)}(t) + \dots + A_{1}(t) \cdot Y'(t) + A_{0}(t) \cdot Y(t) = G(t) \qquad (p-D)$$

$$A_{k}(t) = \begin{pmatrix} a_{k11}(t) & \dots & a_{k1p}(t) \\ \vdots & \ddots & \vdots \\ a_{kp1}(t) & \dots & a_{kpp}(t) \end{pmatrix} \qquad G(t) = \begin{pmatrix} g_{1}(t) \\ \vdots \\ g_{p}(t) \end{pmatrix}$$

$$t \in [-1, 1] \qquad Y_{i}^{(k)}(-1) = v_{ik} \qquad i \in [1, p], k \in [0, r-1]$$

Integral Reformulation

Posing $\Phi = Y^{(r)}$, System (p-D) is transformed into:

$$\Phi(t) + \int_{t_0}^t \begin{pmatrix} k_{11}(t,s) & \cdots & k_{1p}(t,s) \\ \vdots & \ddots & \vdots \\ k_{p1}(t) & \cdots & k_{pp}(t) \end{pmatrix} \cdot \Phi(s) \mathrm{d}s = \Psi(t) \tag{p-I}$$

The Almost-Banded Structure of the Operator ${f K}$

$\mathbf{K}_{1,1}$	$\mathbf{K}_{1,2}$	$\mathbf{K}_{1,3}$	$\mathbf{K}_{1,4}$
$\mathbf{K}_{2,1}$	$\mathbf{K}_{2,2}$	$\mathbf{K}_{2,3}$	$\mathbf{K}_{2,4}$
$\mathbf{K}_{3,1}$	$\mathbf{K}_{3,2}$	$\mathbf{K}_{3,3}$	$\mathbf{K}_{3,4}$
$\mathbf{K}_{4,1}$	$\mathbf{K}_{4,2}$	$\mathbf{K}_{4,3}$	$\mathbf{K}_{4,4}$

 \mathbf{K}

 $\mathbf{K}^{[N]}$ (rearranged basis)

 $(X_1,d_1),\ldots,(X_p,d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

 $(X_1,d_1),\ldots,(X_p,d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),...,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

 $(X_1,d_1),\ldots,(X_p,d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

$$d(x,x^*) \le d(x,\mathbf{T} \cdot x) + d(\mathbf{T} \cdot x,x^*).$$

 $(X_1, d_1), \ldots, (X_p, d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

$$d(x,x^*) \le d(x,\mathbf{T} \cdot x) + d(\mathbf{T} \cdot x,\mathbf{T} \cdot x^*).$$

 $(X_1, d_1), \ldots, (X_p, d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

$$d(x,x^*) \leq d(x,\mathbf{T}\cdot x) + \mathbf{\Lambda}\cdot d(x,x^*).$$

 $(X_1, d_1), \ldots, (X_p, d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

- $d(x,x^*) \le d(x,\mathbf{T} \cdot x) + \mathbf{\Lambda} \cdot d(x,x^*).$
- $d(x, \mathbf{T} \cdot x) \leq d(x, x^*) + d(\mathbf{T} \cdot x, x^*).$

 $(X_1, d_1), \ldots, (X_p, d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

- $d(x,x^*) \le d(x,\mathbf{T} \cdot x) + \mathbf{\Lambda} \cdot d(x,x^*).$
- $d(x, \mathbf{T} \cdot x) \leq d(x, x^*) + \mathbf{\Lambda} \cdot d(x, x^*).$

 $(X_1, d_1), \ldots, (X_p, d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}_+^{p \times p}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}^{p \times p}_+$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

Perov: T admits a unique fixed-point x^* .

- $d(x,x^*) \le d(x,\mathbf{T} \cdot x) + \mathbf{\Lambda} \cdot d(x,x^*).$
- $d(x, \mathbf{T} \cdot x) \leq d(x, x^*) + \mathbf{\Lambda} \cdot d(x, x^*).$

Let
$$\varepsilon = d(x, x^*)$$
 and $\eta = d(x, \mathbf{T} \cdot x)$:

$$(1 - \Lambda) \cdot \varepsilon \le \eta \tag{P}$$

$$\big(1+{\color{red}\Lambda}\big)\cdot {\color{blue}\varepsilon} \geq {\color{blue}\eta}$$

$$\varepsilon \geq 0$$

 $(X_1, d_1), \ldots, (X_p, d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}^{p \times p}_{+}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y)$$
 $\forall x, y \in X$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}^{p \times p}_+$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

Perov: T admits a unique fixed-point x^* .

- $d(x,x^*) < d(x,T \cdot x) + \Lambda \cdot d(x,x^*).$
- $d(x, \mathbf{T} \cdot x) \leq d(x, x^*) + \Lambda \cdot d(x, x^*).$

Let
$$\varepsilon = d(x, x^*)$$
 and $\eta = d(x, \mathbf{T} \cdot x)$:

$$(1 - \Lambda) \cdot \varepsilon \le \eta \tag{P}$$
$$(1 + \Lambda) \cdot \varepsilon \ge \eta$$

 $(X_1, d_1), \ldots, (X_p, d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}^{p \times p}_{+}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y) \quad \forall x, y \in X$$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}^{p \times p}_+$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

Perov: T admits a unique fixed-point x^* .

- $d(x,x^*) < d(x,T \cdot x) + \Lambda \cdot d(x,x^*).$
- $d(x, \mathbf{T} \cdot x) \leq d(x, x^*) + \Lambda \cdot d(x, x^*).$

Let
$$\varepsilon = d(x, x^*)$$
 and $\eta = d(x, \mathbf{T} \cdot x)$:

$$(1 - \Lambda) \cdot \varepsilon \le \eta$$

$$(1 + \Lambda) \cdot \varepsilon \ge \eta$$
(P)

 $(X_1, d_1), \ldots, (X_p, d_p)$ complete metric spaces.

- $d(x,y) = (d_1(x_1,y_1),\ldots,d_p(x_p,y_p)) \in \mathbb{R}_+^p$ vector-valued metric.
- $f: X \to X$ is Λ -Lipschitz for $\Lambda \in \mathbb{R}^{p \times p}_{+}$ iff:

$$d(f(x), f(y)) \le \Lambda \cdot d(x, y) \quad \forall x, y \in X$$

• $f: X \to X$ is a contraction if it is Λ -Lipschitz for $\Lambda \in \mathbb{R}^{p \times p}_+$ s.t. $\Lambda^k \to 0$ as $k \to \infty$.

Perov: T admits a unique fixed-point x^* .

- $d(x,x^*) < d(x,T \cdot x) + \Lambda \cdot d(x,x^*).$
- $d(x, \mathbf{T} \cdot x) \leq d(x, x^*) + \Lambda \cdot d(x, x^*).$

Let
$$\varepsilon = d(x, x^*)$$
 and $\eta = d(x, \mathbf{T} \cdot x)$:

$$(1 - \Lambda) \cdot \varepsilon \le \eta$$

$$(1 + \Lambda) \cdot \varepsilon \ge \eta$$
(P)

