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sign e:lpfg;)m ;%azct[\j?g
i “ ‘ x =(~1)*-1.1010011100...1010-2°
63 52 : 0

Discretization of the real line:

0§ 12 1§ ef 4§ E 16§

0yt 2% o1t 225 28 24

= Rounding errors

» Interval Arithmetic
Overapprox reals by intervals
€ [3.14,3.15] e€[2.71,2.72]

Interval extension of arithmetic
operators:

m-ee[3.14-2.72,3.15-2.71]
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» Interval Arithmetic » Well-known limitations:
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Approximation Tools in Function Spaces

m a class F of functions, a reference norm || - ||, and a computable family P = (Pp)
to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact
interval.

An Arithmetic for Rigorous Polynomial Approximations



Approximation Tools in Function Spaces

m a class F of functions, a reference norm || - ||, and a computable family P = (Pp)
to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact
interval.

Taylor expansions...

® monomial basis
m fast computations

m related to initial conditions

N £(n)
Tu(H)e) = 3 O

n=0 n!

An Arithmetic for Rigorous Polynomial Approximations



Approximation Tools in Function Spaces

m a class F of functions, a reference norm || - ||, and a computable family P = (Pp)
to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact

interval.
Taylor expansions... should be used with caution!
m non smooth functions?
® monomial basis ® non-analytic functions?
m fast computations m radius of convergence?

m related to initial conditions

N £(n)
Tu(H)e) = 3 O

n=0 n!

An Arithmetic for Rigorous Polynomial Approximations



Approximation Tools in Function Spaces

m a class F of functions, a reference norm || - ||, and a computable family P = (Pp)
to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact

interval.
Taylor expansions... should be used with caution!
m non smooth functions?
® monomial basis ® non-analytic functions?
m fast computations m radius of convergence?

m related to initial conditions

N £(n) f
()0 = 32 T - : '

An Arithmetic for Rigorous Polynomial Approximations



Approximation Tools in Function Spaces

m a class F of functions, a reference norm || - ||, and a computable family P = (Pp)
to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact

interval.
Taylor expansions... should be used with caution!
m non smooth functions?
® monomial basis ® non-analytic functions?
m fast computations m radius of convergence?

m related to initial conditions

N £(n) f
Tu(H)e) = 3 O

% m 1w 1

An Arithmetic for Rigorous Polynomial Approximations



Approximation Tools in Function Spaces

m a class F of functions, a reference norm || - ||, and a computable family P = (Pp)
to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact

interval.
Taylor expansions... should be used with caution!
m non smooth functions?
® monomial basis ® non-analytic functions?
m fast computations m radius of convergence?

m related to initial conditions

N £(n)
()0 = 32 T - '

An Arithmetic for Rigorous Polynomial Approximations



Approximation Tools in Function Spaces

m a class F of functions, a reference norm || - ||, and a computable family P = (Pp)
to approximate them.

Theorem (Stone Weierstrass)

The family of polynomials is dense in the set of continuous functions over a compact

interval.
Taylor expansions... should be used with caution!
m non smooth functions?
® monomial basis ® non-analytic functions?
m fast computations m radius of convergence?

m related to initial conditions

N £(n)
Tu(H)e) = 3 O

— n _

An Arithmetic for Rigorous Polynomial Approximations



Chebyshev Polynomials and Series

Chebyshev Family of Polynomials
To(X) =1,
Ti(X) = X,

Thr2(X) = 2XTp41(X) = Ta(X).
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Chebyshev Polynomials and Series

Chebyshev Family of Polynomials
To(X) =1,
Ti(X) = X,

Thr2(X) = 2XTp41(X) = Ta(X).

To(X)=1
Ti(X) =X
T2(X)=2X%2-1
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Chebyshev Polynomials and Series

To(X) =1,
Tl(X) = Xa

!
|
|
:
|
Chebyshev Family of Polynomials |
|
:
!
The2(X) = 2XTpe1(X) = Ta(X). |

To(X) =1
Ti(X)=X

T2(X) =2X% -1
T3(X) =4X3-3X
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Chebyshev Polynomials and Series

Chebyshev Family of Polynomials
To(X) =1,
Ti(X) = X,

Thr2(X) = 2XTp41(X) = Ta(X).

To(X) =1

Ti(X)=X

T2(X) =2X% -1
T3(X) =4X3-3X
Ta(X)=8X*-8X%2+1
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Chebyshev Polynomials and Series

Chebyshev Family of Polynomials ;
To(X) =1, -
Ti(X) = X,

Thr2(X) = 2XTp41(X) = Ta(X).

To(X)=1

Ti(X) =X
Ta(X)=2X%2-1

T3(X) =4X3 -3X
Ta(X)=8X*-8X2+1
Ts(X) = 16X5 - 20X3 + 5X
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Chebyshev Polynomials and Series

Chebyshev Family of Polynomials

To(X) =1,
Tl(X) = Xa
The2(X) = 2XTpe1(X) = Ta(X).

Trigonometric Relation

m Tp(cos¥) = cos nd. To(X)=1
= Vte[-1,1],|Ta(t) < 1. Ti(X) =X
‘ Ta(X)=2X%2-1
T3(X) = 4Xx3-3X
Ta(X)=8X*-8X2+1
Ts(X) = 16X5 - 20X3 + 5X
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Chebyshev Polynomials and Series

l
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Chebyshev Family of Polynomials . :
|
|
|
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|
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To(X) =1, - &
T1(X) = X, !
Thi2(X) = 2XTp1(X) = Th(X). l
) JAVAVARN\/2)
m Tp(cos¥) = cos nd. To(X) =1
= Vte[-1,1],|Ta(t)| < 1. Ti(X) = X
‘ Ta(X)=2X%2-1
0 003
8 ToTm=3(Totm+ To-m). Ta(X)=8X*-8X>+1
o [ Ta= i (T - I, Ts5(X) = 16X° - 20X> + 5X
)
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Chebyshev Polynomials and Series

Scalar Product and Orthogonality Relations

Chebyshev Family of Polynomials 1F(t)e(t
oyran (f,g)=/ ®e(t) 4,
’ -1 V1-¢2
Tl(X) = X7
The2(X) = 2XTpe1(X) = Ta(X).

Trigonometric Relation

m Tp(cos¥) = cos nd.
= Vte[-1,1],|Ta(t)| < 1.

Multiplication and Integration

mThThm= %(Tn+m+ Tn—m)-

_ 1 (Ther _ Tnaa
.fT"_2(n+1 n-1 )"
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Chebyshev Polynomials and Series

Scalar Product and Orthogonality Relations
Chebyshev Family of Polynomials 1F(t)e(t
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Chebyshev Polynomials and Series
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Rigorous Polynomial Approximations

Definition

A pair (P,e) e R[X] xRy is a rigorous
polynomial approximation (RPA) of f for a
given norm | - | if |f - P|| <e.
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Definition

A pair (P,e) e R[X] xRy is a rigorous
polynomial approximation (RPA) of f for a
given norm | - | if [|f - P|| <e.

Example: sup-norm over [-1,1]:

fe(P,e) < |f(t)-P(t)<e Vte[-1,1]
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Rigorous Polynomial Approximations

Definition

A pair (P,e) e R[X] xRy is a rigorous
polynomial approximation (RPA) of f for a
given norm | - | if [|f - P|| <e.

Example: sup-norm over [-1,1]:

fe(P,e) < |f(t)-P(t)<e Vte[-1,1]

Some elementary operations:
= (P,e)+(Qn)=(P+Q,e+n),
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Rigorous Polynomial Approximations

Definition

A pair (P,e) e R[X] xRy is a rigorous
polynomial approximation (RPA) of f for a

given norm | - | if [|f - P|| <e.
Example: sup-norm over [-1,1]: * '
Example:
fe(P,e)=|f(t)-P(t)|[<e Vte[-1,1] r(t) = f(t) +g(t) - h(t)

Some elementary operations:
= (P,e)+(Qn)=(P+Q,e+n),
u (P7€) - (QJI) = (P_ Q7€+77)’
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Rigorous Polynomial Approximations

Definition

A pair (P,e) e R[X] xRy is a rigorous
polynomial approximation (RPA) of f for a

given norm | - | if [|f - P|| <e.
Example: sup-norm over [-1,1]: * '
Example:
fe(Pe) = |f(t)-P(t)[<e Vte[-1,1] r(t) = k(t)(f(t) +g(t) - h(t))

Some elementary operations:
= (P,e)+(Qn)=(P+Q,e+n),
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provided that |fg| < [f]g].
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Rigorous Polynomial Approximations
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Fixed-Point Based Validation

Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T - x = x over metric space (X, d)
and obtain x candidate approximation of exact solution x*.
» Find rigorous error bound ||x — x*|.
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Banach Fixed-Point Theorem

If (X,d) is complete and T contracting of ratio p <1,
» Then T admits a unique fixed-point x*,
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Fixed-Point Based Validation

Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T - x = x over metric space (X, d)
and obtain x candidate approximation of exact solution x*.
» Find rigorous error bound ||x — x*|.

Banach Fixed-Point Theorem

If (X,d) is complete and T contracting of ratio p <1,
» Then T admits a unique fixed-point x*, and
» For all x € X,

d(x, T x) < d(x,x*) < d(x,T-x)' I 1
1+ p 1-p
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Fixed-Point Based Validation

Banach Fixed-Point Theorem

Main Idea: A Posteriori Validation

Reformulate the problem as a fixed-point equation T - x = x over metric space (X, d)
and obtain x candidate approximation of exact solution x*.
» Find rigorous error bound ||x — x*|.

Banach Fixed-Point Theorem

If (X,d) is complete and T contracting of ratio p < 1,
» Then T admits a unique fixed-point x*, and
» For all x € X,

d(X,T~x)Sd(x’x*)sd(x,T-x)' r 1
1+p 1-p

Quasi-Newton Method for F-x =0

/ Obtain A ~ (DF)~! in order to define:

T-x=x-A-F-x.

g
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An Example: Tschauner and Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

” ( 3 )
zZ' +|d-—)z=cC
1+ ecosv
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An Example: Tschauner and Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

” ( 3 )
z'+|4-——|z=c
1+ ecosv

Approximate coefficient
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An Example: Tschauner and Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

” ( 3 )
zZ' +|d-—)z=cC
1+ ecosv

Approximate coefficient

Approximate solution with a Chebyshev series
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An Example: Tschauner and Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

” ( 3 )
z'+|4-——|z=c
1+ ecosv

Approximate coefficient

Approximate solution with a Chebyshev series

Validate the obtained solution
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An Example: Tschauner and Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

=
—|z=c
1+ ecosv

:

2x107 T T T T T

1.5x107

1x107

5x108

0

-5x106

-1x107 1

-1.5x107 L L L L L
0
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An Example: Tschauner and Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

=
—|z=c
1+ ecosv

i
2x107 T T T T T
V) —

error bound £ E=Z=Z=3

1.5x107 |

1x107

5x108

0

-5x106

-1x107

-1.5x107 L L L L L
0
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An Example: Tschauner and Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

=
—|z=c
1+ ecosv

:

2x107

T3(V) —
flv) ——

1.5x107 | error bound & E=zza 1
1x107
5x108

0

-5x106

-1x107

-1.5x107 L L L L L
0
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Fixed-Point Based Validation

Application to Division

Approximation of x — 4 — —"—

v~ RPA for x — cos x:

0.77 To(x)—0.23 To(x)+0.005 Ty (x)+4.2.10~°

An Arithmetic for Rigorous Polynomial Approximations



Fixed-Point Based Validation

Application to Division

Approximation of x — 4 — —"—

v~ RPA for x — cos x:

0.77 To(x)—0.23 To(x)+0.005 Ty (x)+4.2.10~°

v~ RPA for x » 1+ 0.5cos x:

1.38To(x)=0.11 T5(x)+0.002 T4 (x)+2.1-107°
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Fixed-Point Based Validation

Application to Division

3

Approximation of x — 4 — —"—

v~ Approximation of x — 1/(1 + 0.5cos x):

L L L L L L L L L
1 -08-06-04-02 0 02 04 06 08 1
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Fixed-Point Based Validation

Application to Division

3

Approximation of x — 4 — —"—

v~ Approximation of x — 1/(1 + 0.5cos x):

L L L L 1 L L L L
1 -08-06-04-02 0 02 04 06 08 1
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Fixed-Point Based Validation

Application to Division

3

Approximation of x — 4 — —"—

v~ Approximation of x — 1/(1 + 0.5cos x):

o T 1 L L
1 -08-06-04-02 0 02 04 06 08 1
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Fixed-Point Based Validation

Application to Division

Approximation of x — 4 — —"—

v~ Approximation of x — 1/(1 + 0.5cos x):

o T 1 L L
1 -08-06-04-02 0 02 04 06 08 1

p=0.73To(x)+0.06 To(x) =~ 1/(1+0.5cosx)
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Fixed-Point Based Validation

Application to Division

- - 3
° Division: g/f (f * O) ApprOX|mat|on of x4 - 1+ecosx

»Solve F-p=fp-g=0 v~ Approximation of x — 1/(1 + 0.5cos x):

(DF),-h=fh  (DF);'-h=F""h

NI T 1 L ot
1 -08-06-04-02 0 02 04 06 08 1

p=0.73To(x)+0.06 To(x) =~ 1/(1+0.5cosx)
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Fixed-Point Based Validation

Application to Division

- - 3
° Division: g/f (f * O) ApprOX|mat|on of x4 - 1+ecosx

»Solve F-p=fp-g=0 v~ Approximation of x — 1/(1 + 0.5cos x):

(DF),-h=fh  (DF);'-h=F""h

» Use fy ~ F1:

NI T 1 L ot
1 -08-06-04-02 0 02 04 06 08 1

p=0.73To(x)+0.06 To(x) =~ 1/(1+0.5cosx)

T-o=¢p T-po=p-f(fo-g)
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Fixed-Point Based Validation

Application to Division

° Division: g/f (f * O) Approximation of x4 - 1+ecosx

»Solve F-o=fp—-g=0

v~ Approximation of x — 1/(1 + 0.5cos x):

(DF),-h=fh  (DF);'-h=F""h

» Use fy ~ F1:

T-o=¢p T-po=p-f(fo-g)

o T 1 L ot
1 -08-06-04-02 0 02 04 06 08 1

p=0.73To(x)+0.06 To(x) =~ 1/(1+0.5cosx)

» T affine, pu = |[DT| = |[1-ff| <1?
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Fixed-Point Based Validation

Application to Division

° Division: g/f (f * O) Approximation of x4 - 1+ecosx

»Solve F-o=fp—-g=0

v~ Approximation of x — 1/(1 + 0.5cos x):

(DF),-h=fh  (DF);'-h=F""h

» Use fy ~ F1:

T-o=¢p T-po=p-f(fo-g)

Tos 05 00z 0 oz o4 05 08 1
p=0.73To(x)+0.06 To(x) =~ 1/(1+0.5cosx)

»pu=37-103<<1
» T affine, u= |[DT| = |1 -fof]| <17
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Fixed-Point Based Validation

Application to Division

° Division: g/f (f * O) Approximation of x4 - 1+ecosx

»Solve F-o=fp—-g=0

v~ Approximation of x — 1/(1 + 0.5cos x):

(DF),-h=fh  (DF);'-h=F""h

» Use fy ~ F1:

T-o=¢p T-po=p-f(fo-g)

0500040z o 02 01 06 05 1
p=0.73To(x)+0.06 To(x) =~ 1/(1+0.5cosx)
»pu=37-103<<1
. V" RPA for x » 1/(1+0.5cos x):
» T affine, u=|DT| =|1-7f]|<17?

0.73 ]O(X) +0.06 ;2(X) +1.3-10
( Y-8 g olrp—8

1+p B f 1-p
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Fixed-Point Based Validation

Application to Division

° Division: g/f (f * O) Approximation of x4 - 1+ecos x
»Solve F-p=fp-g=0 v~ Approximation of x — 1/(1 + 0.5cos x):

(DF),-h=fh  (DF);'-h=F""h

» Use fy ~ F1:

P A o5 06 0403 0 02 01 06 05 1
p=0.73To(x)+0.06 To(x) =~ 1/(1+0.5cosx)

»pn=37-103%<<1
. V" RPA for x » 1/(1+0.5cos x):
» T affine, p = |DT|| = |1-1ff||<1?

0.73To(x) +0.06 To(x) £1.3-1073

Iotfe=l ., _ &)< 1oe=8l /' RPA for x 4 - 3/(1 + 0.5 cos x):
1+p f 1-p

1.82Tp(x) - 0.18T2(x) +3.8-1073
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Outline

Validated Solutions of Linear Differential Equations
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Linear Ordinary Differential Equations

LODE and Initial Value Problem

YO () + a1 ()y () + o+ ar ()Y () + ao(b)y(t) = g(t)
y(-)=vw Y(-D=wv ... Y1) =v,

te[-1,1] a;, g sufficiently regular (C°, RPA, polynomial)

(D)
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Linear Ordinary Differential Equations

YO () + a1 ()y () + o+ ar ()Y () + ao(b)y(t) = g(t)
y(-)=vw Y(-D=wv ... Y1) =v,

te[-1,1] a;, g sufficiently regular (C°, RPA, polynomial)

(D)

v

Integral Reformulation

Let ¢ = y("), (D) becomes:

e+ K-p=1), O]
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Linear Ordinary Differential Equations

YO () + a1 ()y () + o+ ar ()Y () + ao(b)y(t) = g(t)
y(-)=vw Y(-D=wv ... Y1) =v,

te[-1,1] a;, g sufficiently regular (C°, RPA, polynomial)

(D)

v

Integral Reformulation

Let ¢ = y("), (D) becomes:

e+ K-p=1), O]

r=1 t
" Koo(t) = 240 [ T(e)e(s)ds
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Linear Ordinary Differential Equations

YO () + a1 ()y () + o+ ar ()Y () + ao(b)y(t) = g(t)
y(-)=vw Y(-D=wv ... Y1) =v,

te[-1,1] a;, g sufficiently regular (C°, RPA, polynomial)

(D)

v

Integral Reformulation

Let ¢ = y("), (D) becomes:

e+ K-p=1), O]

r=1 t
B K-po(t) = Bi(t) fl T;(s)p(s)ds = compact operator
j=0 -
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Linear Ordinary Differential Equations

YO () + a1 ()y () + o+ ar ()Y () + ao(b)y(t) = g(t)
y(-)=vw Y(-D=wv ... Y1) =v,

te[-1,1] a;, g sufficiently regular (C°, RPA, polynomial)

(D)

v

Integral Reformulation

Let ¢ = y("), (D) becomes:

e+ K-p=1), O]

r=1 t
B K-po(t) = Bi(t) fl T;(s)p(s)ds = compact operator
j=0 -

m (t) = g(t) + (some function depending on the v;'s)
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Linear Ordinary Differential Equations

YO () + a1 ()y () + o+ ar ()Y () + ao(b)y(t) = g(t)
y(-)=vw Y(-D=wv ... Y1) =v,

te[-1,1] a;, g sufficiently regular (C°, RPA, polynomial)

(D)

Integral Reformulation

| A

Let ¢ = y("), (D) becomes:
e+K-p=1), M

r=1 t
B K-po(t) = Bi(t) fl T;(s)p(s)ds = compact operator
j=0 -

m ¢(t) = g(t) + (some function depending on the v;’s)

A

Theorem (Picard-Lindel6f)

(1) (and hence (D)) has a unique solution.
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The Almost-Banded Structure of the Operator K

Matrix Representation in Chebyshev Basis

The infinite-dimensional operator K.
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The Almost-Banded Structure of the Operator K

Matrix Representation in Chebyshev Basis

The finite-dimensional truncation K[V,
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The Almost-Banded Structure of the Operator K

Example with Tschauner-Hempel Equation

3 t 3 t
Kop=-t(4-—> f d+(—4+7)/ d
i ( 1+ecost) ty p(s)ds 1+ecost/ Jyy sp(s)ds
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The Almost-Banded Structure of the Operator K

Example with Tschauner-Hempel Equation

K ow~ t(1.82—0.18T2(t))/tgo(s)ds+(—1.82+O.18T2(t))ftsgo(s)ds
ty o
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The Almost-Banded Structure of the Operator K

Example with Tschauner-Hempel Equation

t t
Ko~ (1473T1(t)—0409T3(t))f o(s)ds + (—1.82+0.18T2(t))/ so(s)ds
to [ — )
Bo(t) B1(t)
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The Almost-Banded Structure of the Operator K

Example with Tschauner-Hempel Equation

Lawasen

1730080

0.320000

0.050000

0.022500

o

o

K-~ (1.73Ti(t) - 0.09T5(t)) ftg;(s)ds+ (~1.82+0.18T>(¢))
) [ —)

0.s06s67

0.652500

osto00

1ossz

0.003750

0.326250

0.576687

0258

0.030000

0.052917

0.001875

o.364000

0438128

o.036000

0137378

0028378

00011

o

015507

0. L1532

osse

ansonn

0.065167

osie

0.000750

Bo(t)

0.0e6g87

o.070288

0.008871

0.036042

o021

0.012708

0.000536

0.0s6875

0.045028

0.004500

0.002571

0.02003

o.02m527

0.005011

0.000402

o

o

o

o

o

w5042

0.004000

0002625

o510

0020021

ooms7

0000312

0.03033

0.02450

0.003000

0.001429

0.000538

o.0u1ste

o.01s230

0.005770

0.000250
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0.023636

0021628

0.002338

00011

0.000452

o

o.comsse

o

o088

0.004635

0.000285

0.018558

0007475

0.001875

0.000909

0,002

0.006774

0.005675

0,002

0.000170

o

o

o

o

oissss

)

0.001s38

0.000750

0.000250

wosea1

o.007578

s

0000244

0.013000

0.012098

o.001286

0.000629

0.000205

0.00u51

0.006692

0.002815

0.000126

o

o

o

o

1)

onoz

ooss

0.001051

0.000s36

o.000170

s

0.0056st

onazs

0.000107

0.005675

o.008872

0.000937

0.000452

0.000144

0,007

0.004505

0.002127

0.000094

o

o

o

o

ooazs

s

0.000814

0.000402

0000126

w701

0.004285

e

0.000083

0.00222

0.006784

0,000

0.000353

0.00007

0.00233

0,007

0.001683

0.000074

0.006386

o.006087

0.000632

0.000313

o.co0ast

o.00s2

0003318

0.0

0.00s687

0.005356

0.000552

0.000215

0.000083

o.001812

0.002555

0,001

o

o

o

oosose

oodsos

0.000s0s

0.000250

0.c00074

w1

0.002655

0.004595

0,003

0.000855

0.00026

0.000065

0

0,003

0.002395



Approximate Solution to Tschauner-Hemple Equation

= We want to solve z/(t) + (4 - m)z(t) =c with z(-1) =0, Z/(-1) =1 and
c=1
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Approximate Solution to Tschauner-Hemple Equation

= We want to solve z/(t) + (4 - m)z(t) =c with z(-1) =0, Z/(-1) =1 and
c=1

= Equivalent to (I+K)-¢ =1 where ¢ = z".
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Approximate Solution to Tschauner-Hemple Equation

= We want to solve z/(t) + (4 - m)z(t) =c with z(-1) =0, z/(-1) =1 and
c=1

= ~ Equivalent to (I + K[N]) - =1 where p = 2"
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Approximate Solution to Tschauner-Hemple Equation

m We want to solve z/(t) + (4

! - Troeesz) 2(1) = ¢ with z(-1) =0, 2/(-1) = 1 and
c=1.

= ~ Equivalent to (I + K[N]) - =1 where p = 2"

m We have a matrix representation of I + KM

An Arithmetic for Rigorous Polynomial Approximations



Approximate Solution to Tschauner-Hemple Equation

= We want to solve z/(t) + (4 - m)z(t) =c with z(-1) =0, z/(-1) =1 and
c=1

= ~ Equivalent to (I + K[N]) - =1 where p = 2"

m We have a matrix representation of I + KM
m )~ -0.82Tg—1.73T; +0.18 T» + 0.09T5.
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m We want to solve z/(t) + (4
c=1

~ Equivalent to (I + K[N]) - =1 where p = 2"

z(t) = c with z(-1) =0, z’(-1) =1 and

_ 4)
1+0.5cos t

m We have a matrix representation of I + KM
W~ —-0.82Tp - 1.73T1 + 0.18T» + 0.09T3.

Hence, by inverting the linear system, we get:
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Approximate Solution to Tschauner-Hemple Equation

m We want to solve z/(t) + (4
c=1

~ Equivalent to (I + K[N]) - =1 where p = 2"

- m)z(t) =c with z(-1) =0, z/(-1) =1 and

m We have a matrix representation of I + KM
P~ —-0.82Tg—-1.73T; +0.18T, + 0.09T3.

Hence, by inverting the linear system, we get:

©=-0.6Tp—1.19T; +0.62T, +0.17T5 —0.05T; — 0.01T5
+2.1-10°T6+3.2-10°T7-5.8-10 °Tg - 7.6-10 ° Ty +1.2-10° Ty
+1.4-107 T3 -1.9-10°T15-2.0-10 °Ty3 +2.6- 10 ° T4 +2.5- 10 1 T35
~-3.0-102T;6-2.6-10°Ty7+3.0-10 T35 +2.5-10 ° T3 - 2.6 - 107 ° Ty
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Designing the Newton-like Operator T

Construct T: To-Do List

m Truncation order N.
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Designing the Newton-like Operator T

Construct T: To-Do List

m Truncation order N.

m Approx inverse:

A~ (I+K)?
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Designing the Newton-like Operator T

Construct T: To-Do List

m Truncation order N.

m Approx inverse:

A~ (I+KMNMH
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Designing the Newton-like Operator T

Construct T: To-Do List

Decomposition of the Operator Norm

m Truncation order N.
m Approx inverse:

DT = [I-A(I+K)| < [I- A(I+KM) |+ |AK-KM)).
A~ 1+ KMy DT = | (I+K)| < [1-A( M +IA( )
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Designing the Newton-like Operator T

Construct T: To-Do List

Decomposition of the Operator Norm

m Truncation order N.
m Approx inverse:

DT| = [I-A(I+K)| < I - A(I+ KMy +|AK-KM))|.
An (14 KN DT = [I-A(I+K)| < | ( +IA( )

Approximation error
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Designing the Newton-like Operator T

Construct T: To-Do List

Decomposition of the Operator Norm

m Truncation order N.
m Approx inverse:

DT = [I-AI+K)| < |I - AT + KIMY [+ A(K - KM
A~ 1+ KMy DT = [T-A(I+K)| < | ( )+ A( )l

Approximation error Truncation error
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Designing the Newton-like Operator T

Construct T: To-Do List

Decomposition of the Operator Norm

m Truncation order N.
m Approx inverse:

DT = |[I-A(I+K)| < [T - AT+ KM+ |AK-KM)Y).
A~ 1+ KMy DT = [I-A(I+K)| < | ( ) +IA( )

Approximation error:
m Involves basic arithmetic operations
on matrices:

m Multiplication
m Addition
® 1l-norm
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Designing the Newton-like Operator T

Construct T: To-Do List

Decomposition of the Operator Norm

m Truncation order N.
m Approx inverse:

DT = [I-A(I+K)| < T - A(I+ KMy +|AK-KM)).
An (14 KN DT = [I-A(I+K)| < | ( Y+ A( )|

Approximation error: Truncation error:
m Determines the minimal value of N we
can choose.

m Involves basic arithmetic operations
on matrices:

= Multiplication .
m Addition
® 1l-norm

An Arithmetic for Rigorous Polynomial Approximations



Integration of LODEs in RPA Arithmetics

Loy =y () +a,a(t)y ™ (8) ++ar(t)y' (1) + ao(t)y(t) = g(t)
y(-D=vw  Y(-D=wv ... YU =v,

Rigorous Solving - Overview

Integral reformulation: ¢ + K- =1 with ¢ = y(’),

(D)

]

Numerical solving: approximation ¢ of ¢*,

=

Creating Newton-like operator: T - = ¢,

Obtaining 1 > [DT|,

fru<l e-¢*|<e=le-T o|/(1-pn),

Integrate RPA (p,¢) r times with initial conditions to obtain a RPA for y*.

2 =
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Integration of LODEs in RPA Arithmetics

Loy =y () +a,a(t)y ™ (8) ++ar(t)y' (1) + ao(t)y(t) = g(t)
y(-D=vw  Y(-D=wv ... YU =v,

Rigorous Solving - Overview

Integral reformulation: ¢ + K- =1 with ¢ = y(’),

(D)

Numerical solving: approximation ¢ of ¢*,

Creating Newton-like operator: T - = ¢,

@ Obtaining p > |[DT|,

fru<l e-¢*|<e=le-T o|/(1-pn),

@ Integrate RPA (ip,¢) r times with initial conditions to obtain a RPA for y*.

4

» Extension of the method to RPA
coefficients a; = (&j,¢€/) m
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Integration of LODEs in RPA Arithmetics

Loy =y () +a,a(t)y ™ (8) ++ar(t)y' (1) + ao(t)y(t) = g(t)
y(-D=vw  Y(-D=wv ... YU =v,

Rigorous Solving - Overview

Integral reformulation: ¢ + K- =1 with ¢ = y(’),

(D)

Numerical solving: approximation ¢ of ¢*,

Creating Newton-like operator: T - = ¢,

@ Obtaining p > |[DT|,

fru<l e-¢*|<e=le-T o|/(1-pn),

@ Integrate RPA (ip,¢) r times with initial conditions to obtain a RPA for y*.

4

» Extension of the method to RPA
coefficients a; = (&j,¢€/)
» Extension to Boundary Value Problems

(BVP)
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Solution to Tschauner and Hempel Equations

Bring our Example to the End

m Approximation error < 1.5-1073,
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Solution to Tschauner and Hempel Equations

Bring our Example to the End

m Approximation error < 1.5-1073,

m Truncation error < 1.21-1072.
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Solution to Tschauner and Hempel Equations

Bring our Example to the End

m Approximation error < 1.5-1073,
m Truncation error < 1.21-1072.

m p<15-1073+1.21-1072
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Solution to Tschauner and Hempel Equations

Bring our Example to the End

m Approximation error < 1.5-1073,
m Truncation error < 1.21-1072.

m p<15-1073+1.21-1072=1.36-1072.
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Solution to Tschauner and Hempel Equations

Bring our Example to the End

m Approximation error < 1.5-1073,
= Truncation error < 1.21-1072.
m p<15-1073+1.21-1072=1.36-1072.

IT-o-¢l=|A(p+K-¢-1)|=6.48-107".

An Arithmetic for Rigorous Polynomial Approximations



Solution to Tschauner and Hempel Equations

Bring our Example to the End

m Approximation error < 1.5-1073,
m Truncation error < 1.21-1072.

m p<15-1073+1.21-1072=1.36-1072.

m [T p-¢f=[A(p+K-p-9)|=648-1071°.
m Hence:
6.48-10716 . 6.48-10716
T — < le =@ < T E—
1+p 1-p
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Solution to Tschauner and Hempel Equations

Bring our Example to the End

= Approximation error < 1.5-1073.
= Truncation error < 1.21-1072.
<1510 41.21-1072=1.36-1072.

IT ¢l = |A(p+K-p-9)| =6.48- 10715,

m Hence:

6.39-1071° < le - % < 6.57-1071°

A\ Take into account approximation error of coefficient!
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Conclusion and Future Work

A general framework for an arithmetic of RPAs in Chebyshev basis.

m An efficient algorithm to compute RPAs for LODEs:

m Coefficients represented by RPAs.
m Extension to the vectorial case + a new fixed-point theorem for vector-valued problems.

m Future directions:

m Non-linear ODEs.
m Other orthogonal families of polynomials.

A CoQ implementation.
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Fixed-Point Based Validation

Application to Division and Square Root

e Division: g/f (f #0)
»Solve F-o=fpo-g=0

(DF),-h=fh  (DF)'-h=f"h
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Application to Division and Square Root

e Division: g/f (f #0)
»Solve F-o=fpo-g=0

(DF),-h=fh  (DF)'-h=f"h
» Use fy ~ F1;

T-p=¢p T-p=p-f(fp-g)
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Fixed-Point Based Validation

Application to Division and Square Root

)
e Division: g/f (f #0)
»Solve F-o=fpo-g=0
(DF),-h=fh  (DF)'-h=f"h

» Use fo ~ FL:

T-p=¢p T-p=p-f(fp-g)
» T affine, = [DT| = |1 - fof| <17

I(fe-al ., &, lo(fr-g)l
<le-=Zl<
1+p f

1-p
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Fixed-Point Based Validation

Application to Division and Square Root

e Division: g/f (f #0) 0 Square Root: \/f (f > 0)

»Solve F-o=fpo-g=0 »SolveF~¢:¢2—f:0 &Twosolutions!

1
(DF),-h=fh  (DF)'-h=f"h

(DF),-h=20h  (DF);'-h="—h

2
» Use fo ~ FL:
T-p=¢p T-p=p-f(fp-g)
» T affine, o= [DT| = |1-fof| <17

I(fe-al ., &, lo(fr-g)l
<le-=Zl<
1+p f

1-p
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Fixed-Point Based Validation

Application to Division and Square Root

e Division: g/f (f #0)
»Solve F-o=fpo-g=0

(DF),-h=fh  (DF)'-h=f"h
» Use fo ~ FL:
T-p=¢p T-p=p-f(fp-g)

» T affine, o= |[DT| = |1-ff| <17?

I(fe-al ., &, lo(fr-g)l
<le-=Zl<
1+p f

1-p

0 Square Root: \/f (f > 0)

» Solve F - @p= 592 -f=0 & Two solutions!
(DF),-h=20h  (DF);'-h= ¢2
» Use fhmp ! (» 1/V/F):

1

h

fo
T-p=¢ T-Pzw—a(v”z—f)
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Fixed-Point Based Validation

Application to Division and Square Root

e Division: g/f (f #0)

0 Square Root: \/f (f > 0)
»Solve F-o=fpo-g=0

» Solve F - @p= 592 -f=0 & Two solutions!

1
(DF),-h=fh  (DF)'-h=f"h

(DF),-h=20h  (DF);'-h= ¢2
» Use fo » @71 (m 1/7/F):

h
» Use fo ~ FL:

o
T-p=¢ T p=¢p-hHifp-g) Tp=¢ To=p-2(s-1)
» T affine, 4o = [DT = |1 - fof| <17 (DT, | = 1= fol.

» T non-linear, |

fo(fe -8l g, . Ih(fe-g)l
Intre-e)l le-=ZlI < ———

1+p f 1-p
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Fixed-Point Based Validation

Application to Division and Square Root

e Division: g/f (f #0)
»Solve F-o=fpo-g=0

(DF),-h=fh  (DF)'-h=f"h

» Use fo ~ FL:

T-p=¢p T-p=p-f(fp-g)

» T affine, o= |[DT| = |1-ff| <17?

Iolfe-l ., _&, . lolfe-2g)l
<lp-E <
1+p f 1-p

dessin inclusion boule image

0 Square Root: \/f (f > 0)

» Solve F - @p= 592 -f=0 & Two solutions!
(DF),-h=20h  (DF);'-h= ¢2
» Use fhmp ! (» 1/V/F):

1
h

fo
T-p=¢ T-Pzw—a(v”z—f)

(DT)e| =1 =fo].
3r>0- T:B(p,r)— B(p,r)?

» T non-linear, |

IT-o-@l+r sup [(DT)yl <r
YeB(p,r)
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Fixed-Point Based Validation

Application to Division and Square Root

' '
e Division: g/f (f #0) 0 Square Root: \/f (f > 0)
»Solve F-o=fpo-g=0 »SolveF~¢:¢2—f:0 &Twosolutions!
-1
(DF),-h=fh  (DF);'-h=f"h (DF),,-h=2ph  (DF);'-h= VQ h
» Use foy ~ L » Use fo » @71 (m 1/7/F):
fo
T-p=¢ T p=¢p-hHifp-g) Tp=¢ To=p-2(s-1)
» T affine, p = |[DT|| = |1-1ff||<17? » T non-linear, |(DT),| = |1- fopl.
3r>0- T:B(g,r) - B(p,r)?
1o (fe -2l <lo-E|< I (fe -2l IT - o-¢l+r sup [(DT)y|<r
1+[,L f 1—[,L PeB(p,r)

» Check A >0 = 0 < Fiin £ Fmaxe
» Check i = |1 = foee| + ||fo] rmin < 1.

dessin inclusion boule image
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Fixed-Point Based Validation

Application to Division and Square Root

.
e Division: g/f (f #0) 0 Square Root: \/f (f > 0)
»Solve F-o=fpo-g=0 »Solve Foo=¢?—f=0 AN Two solutions!
(DF),-h=fh  (DF)'-h=f"h (DF),-h=20h  (DF).'-h= il h
» Use foy ~ L » Use fo » @71 (m 1/7/F):
T-p=¢p T-p=p-fi(fp-g) T-p=¢ T~¢=¢—%(¢2—f)

» T affine, p = |[DT|| = |1-1ff||<17? » T non-linear, |

(DT)..| = 1~ foe].
3r>0- T:B(g,r) - B(p,r)?
Ifo(fe-g)l <lo-E|< Ifo(fe —g)l IT - o-¢l+r sup [(DT)y|<r
1+p f 1-p peB(p,r)
» Check A >0 = 0< i £ Fmaxe
> Check n= Hl - fO\p” + H fO Hrmm <1

dessin inclusion boule image (2= F)/2]
<

02—
oA < 1o~ 012

1+p B
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Designing the Newton-like Operator T

Bounding the Truncation Error

Truncation Error

JA - (K-KMN)|=sup|A- (K-KM). 7
i>0
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Designing the Newton-like Operator T

Bounding the Truncation Error

Truncation Error

Direct computation.

JA - (K-KMN)|=sup|A- (K-KM). 7
i>0
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Designing the Newton-like Operator T

Bounding the Truncation Error

Truncation Error

Direct computation.

IA- (K- K[N])” —sup|A- (K - K[N]) T Direct computation.
i0
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Designing the Newton-like Operator T

Bounding the Truncation Error

Truncation Error Direct computation.

Direct computation.

A - (K- K[N])” =sup||A- (K- K[N]) - T Bound the remaining infinite
20 number of columns:
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Designing the Newton-like Operator T

Bounding the Truncation Error

Truncation Error

=

Direct computation.

o]

Direct computation.

=

Bound the remaining infinite
number of columns:
m Using the bounds in 1/i and 1/i*:
possibly large overestimations.

|A-(K-KM)| =sup|A- (K -KM). 7))
i>0

C D
diag(i) < — init(i) <=
! !
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Designing the Newton-like Operator T

Bounding the Truncation Error

Direct computation.

Direct computation.
Bound the remaining infinite
number of columns:
u Using the bounds in 1/i and 1/i*:
possibly large overestimations.

D
2

Truncation Error

|A-(K-KM)| =sup|A- (K -KM). 7))
i>0

C
diag(i) < — init(i) <
1

m Using a first order difference
method: differences in 1/i2 and

1/i*.

C/

diag(i) < diag(io) + —
!

7

init (i) < init(io) + —-
!
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Designing the Newton-like Operator T

Bounding the Truncation Error

Truncation Error Direct computation.

Direct computation.
JA - (K-KMy| =sup|A - (K-KMy. 73 Bound the remaining infinite
20 number of columns:
u Using the bounds in 1/i and 1/i*:
possibly large overestimations.

D
2

C
diag(i) < — init(i) <
1

m Using a first order difference
method: differences in 1/i* and

1/i*.

Cl

diag(i) < diag(io) + —
1

7

init (i) < init(io) + —-
I

A : K- KM
Cost: O(N(h+d)) or O((K +d")(h+d))
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Coupled Systems of Linear Ordinary Differential Equations

Coupled LODEs and Initial Value Problem

YO )+ A1 (1) - YO D (£) + -+ AL (D) - Y/ (£) + Ao (t) - Y(t) = G(t)  (p-D)

ak(t) - akp(t) g1(t)
A(t) = : : G(t) = :
akp1(t) -+ akpp(t) gp(t)

te[-1,1] YW (1) =vi  ie[1,p],ke[0,r-1]
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Coupled Systems of Linear Ordinary Differential Equations

Coupled LODEs and Initial Value Problem

YO )+ A1 (1) - YO D (£) + -+ AL (D) - Y/ (£) + Ao (t) - Y(t) = G(t)  (p-D)

ak(t) - akp(t) g1(t)
A(t) = : : G(t) = :
akp1(t) -+ akpp(t) gp(t)

te[-1,1] YW (1) =vi  ie[1,p],ke[0,r-1]

A

Integral Reformulation

Posing ® = Y{("), System (p-D) is transformed into:
t kll(t,S) klp(t,s)
d(t) + : : -®(s)ds = V(t) (p-D
t kpi(t) - kpp(t)
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The Almost-Banded Structure of the Operator K

Example in Dimension 4

Ki Kio Kis Ki4

K21 K> K3 K24

Ks, Ks, Kss Ks.

Ky Ko Kis Ky
K
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The Almost-Banded Structure of the Operator K

Example in Dimension 4

KV
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The Almost-Banded Structure of the Operator K

Example in Dimension 4
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The Almost-Banded Structure of the Operator K

Example in Dimension 4

KM (rearranged basis)
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Vector-Valued Fixed-Point Validation

Vector-Valued Metric and Contractions

(X1,d1),...,(Xp,dp) complete metric spaces.

m d(x,y) = (di(x1,51),---,dp(xp,¥p)) € R? vector-valued metric.
m f: X — X is A-Lipschitz for A e R?*P iff:

d(f(x),f(y)) <A-d(x,y) Vx,yeX

m f: X — X is a contraction if it is A-Lipschitz for A e R?*P s.t. Ak -0 as k — oo.

V.
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