Factoring integers with ECM on the Kalray MPPA-256 processor

Jérémie Detrey

CARAMBA team, LORIA INRIA Nancy — Grand Est Jeremie.Detrey@loria.fr

Joint work with:

Masahiro Ishii (NAIST, Nara, Japan)

Pierrick Gaudry (CARAMBA team, LORIA)

Atsuo Inomata (NAIST, Nara, Japan) Kazutoshi Fujikawa (NAIST, Nara, Japan)

Context: Integer factorization

- ► Central problem in public-key cryptography:
 - integer factorization is a (supposedly) difficult problem
 - e.g., basis for the security of the RSA public-key cryptosystem:
 - private key: large primes p and q
 - ▶ public key: $N = p \cdot q$

Context: Integer factorization

- ► Central problem in public-key cryptography:
 - integer factorization is a (supposedly) difficult problem
 - e.g., basis for the security of the RSA public-key cryptosystem:
 - private key: large primes p and q
 - ▶ public key: $N = p \cdot q$

- Efficient factorization is important for
 - establishing factorization records
 - recommending secure key lengths
 - breaking weak instances of RSA (short keys)

Context: Integer factorization

- ► Central problem in public-key cryptography:
 - integer factorization is a (supposedly) difficult problem
 - e.g., basis for the security of the RSA public-key cryptosystem:
 - private key: large primes p and q
 - ▶ public key: $N = p \cdot q$

- ► Efficient factorization is important for
 - establishing factorization records
 - recommending secure key lengths
 - breaking weak instances of RSA (short keys)
- Current (publicly known) record:
 - factorization of the RSA-768 challenge (768 bits, or 232 digits)
 - ullet the computation took \sim 2000 core-years [Kleinjung *et al.*, 2010]

 \triangleright Find small- to medium-size prime factors p of an integer N:

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p)$

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p) = \tilde{O}(\exp(\log p))$

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p) = \tilde{O}(\exp(\log p))$
 - ECM (Elliptic Curve Method) [Lenstra, 1987]:

$$\exp\left(\left(\sqrt{2} + o(1)\right)\sqrt{\log p \log \log p}\right)$$

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p) = \tilde{O}(\exp(\log p))$
 - ECM (Elliptic Curve Method) [Lenstra, 1987]:

$$\exp\left(\left(\sqrt{2} + o(1)\right)\sqrt{\log p \log \log p}\right)$$

► Find all prime factors of an integer *N*:

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p) = \tilde{O}(\exp(\log p))$
 - ECM (Elliptic Curve Method) [Lenstra, 1987]:

$$\exp\left(\left(\sqrt{2} + o(1)\right)\sqrt{\log p \log \log p}\right)$$

- Find all prime factors of an integer N:
 - (G)NFS (General Number Field Sieve) [Buhler et al., 1993]:

$$\exp\left(\left(\sqrt[3]{\frac{64}{9}}+o(1)\right)\left(\log N\right)^{1/3}\left(\log\log N\right)^{2/3}\right)$$

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p) = \tilde{O}(\exp(\log p))$
 - ECM (Elliptic Curve Method) [Lenstra, 1987]:

$$\exp\left(\left(\sqrt{2} + o(1)\right)\sqrt{\log p \log \log p}\right)$$

- Find all prime factors of an integer N:
 - (G)NFS (General Number Field Sieve) [Buhler et al., 1993]:

$$\exp\left(\left(\sqrt[3]{\frac{64}{9}}+o(1)\right)\left(\log N\right)^{1/3}\left(\log\log N\right)^{2/3}\right)$$

▶ For factoring RSA moduli (\sim 500 bits and above):

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p) = \tilde{O}(\exp(\log p))$
 - ECM (Elliptic Curve Method) [Lenstra, 1987]:

$$\exp\left(\left(\sqrt{2} + o(1)\right)\sqrt{\log p \log \log p}\right)$$

- Find all prime factors of an integer N:
 - (G)NFS (General Number Field Sieve) [Buhler et al., 1993]:

$$\exp\left(\left(\sqrt[3]{\frac{64}{9}}+o(1)\right)\left(\log N\right)^{1/3}\left(\log\log N\right)^{2/3}\right)$$

- ▶ For factoring RSA moduli (\sim 500 bits and above):
 - use NFS (best asymptotic complexity)

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p) = \tilde{O}(\exp(\log p))$
 - ECM (Elliptic Curve Method) [Lenstra, 1987]:

$$\exp\left(\left(\sqrt{2} + o(1)\right)\sqrt{\log p \log \log p}\right)$$

- Find all prime factors of an integer N:
 - (G)NFS (General Number Field Sieve) [Buhler et al., 1993]:

$$\exp\left(\left(\sqrt[3]{\frac{64}{9}}+o(1)\right)\left(\log N\right)^{1/3}\left(\log\log N\right)^{2/3}\right)$$

- ▶ For factoring RSA moduli (\sim 500 bits and above):
 - use NFS (best asymptotic complexity)
 - ullet requires factoring a huge quantity of smaller integers (\sim 200 bits)

- \triangleright Find small- to medium-size prime factors p of an integer N:
 - Trial division: $\tilde{O}(p) = \tilde{O}(\exp(\log p))$
 - ECM (Elliptic Curve Method) [Lenstra, 1987]:

$$\exp\left(\left(\sqrt{2} + o(1)\right)\sqrt{\log p \log \log p}\right)$$

- ► Find all prime factors of an integer *N*:
 - (G)NFS (General Number Field Sieve) [Buhler et al., 1993]:

$$\exp\left(\left(\sqrt[3]{\frac{64}{9}}+o(1)\right)\left(\log N\right)^{1/3}\left(\log\log N\right)^{2/3}\right)$$

- ▶ For factoring RSA moduli (\sim 500 bits and above):
 - use NFS (best asymptotic complexity)
 - ullet requires factoring a huge quantity of smaller integers (\sim 200 bits)
 - \rightarrow use ECM for those

Outline of the talk

- ECM in a nutshell
- ► The Kalray MPPA-256 processor
- ► Multiprecision modular arithmetic
- Results and conclusion

Outline of the talk

- ► ECM in a nutshell
- ► The Kalray MPPA-256 processor
- ► Multiprecision modular arithmetic
- Results and conclusion

▶ Let *K* be a field

- ▶ Let K be a field
- ► An elliptic curve *E* over *K* is a projective plane curve given by an equation of the form

$$E: y^2 = x^3 + Ax + B$$
,

with parameters $A, B \in K$ so that E is smooth

- ▶ Let K be a field
- ► An elliptic curve *E* over *K* is a projective plane curve given by an equation of the form

$$E: y^2 = x^3 + Ax + B,$$

with parameters $A, B \in K$ so that E is smooth

 \blacktriangleright Its set of points on K is given as

$$E(K) = \{(x, y) \in K \times K \mid (x, y) \text{ satisfies } E\}$$

- ▶ Let *K* be a field
- ► An elliptic curve *E* over *K* is a projective plane curve given by an equation of the form

$$E: y^2 = x^3 + Ax + B,$$

with parameters $A, B \in K$ so that E is smooth

▶ Its set of points on *K* is given as

$$E(K) = \{(x, y) \in K \times K \mid (x, y) \text{ satisfies } E\} \cup \{\mathcal{O}\},$$

where \mathcal{O} is called the point at infinity

- ▶ Let K be a field
- ► An elliptic curve *E* over *K* is a projective plane curve given by an equation of the form

$$E: y^2 = x^3 + Ax + B,$$

with parameters $A, B \in K$ so that E is smooth

▶ Its set of points on *K* is given as

$$E(K) = \{(x, y) \in K \times K \mid (x, y) \text{ satisfies } E\} \cup \{\mathcal{O}\},$$

where \mathcal{O} is called the point at infinity

- \blacktriangleright One can define an commutative addition law on E(K):
 - O is the neutral element
 - E(K) is therefore an abelian group

- ▶ Let *K* be a field
- ► An elliptic curve *E* over *K* is a projective plane curve given by an equation of the form

$$E: y^2 = x^3 + Ax + B,$$

with parameters $A, B \in K$ so that E is smooth

▶ Its set of points on *K* is given as

$$E(K) = \{(x, y) \in K \times K \mid (x, y) \text{ satisfies } E\} \cup \{\mathcal{O}\},$$

where \mathcal{O} is called the point at infinity

- ▶ One can define an commutative addition law on E(K):
 - O is the neutral element
 - E(K) is therefore an abelian group
 - if K is finite, then so is E(K)

Back to integer factorization

$$E/K: y^2 = x^3 + Ax + B$$

$$E/K: y^2 = x^3 + Ax + B$$

▶ What happens if we take $K = \mathbb{Z}/N\mathbb{Z}$, with N a composite integer?

$$E/K: y^2 = x^3 + Ax + B$$

- ▶ What happens if we take $K = \mathbb{Z}/N\mathbb{Z}$, with N a composite integer?
 - K is not a field, and $E(\mathbb{Z}/N\mathbb{Z})$ is **not a group!**

$$E/K: y^2 = x^3 + Ax + B$$

- ▶ What happens if we take $K = \mathbb{Z}/N\mathbb{Z}$, with N a composite integer?
 - K is not a field, and $E(\mathbb{Z}/N\mathbb{Z})$ is **not a group!**
 - however, by Chinese remaindering, $E(\mathbb{Z}/N\mathbb{Z})$ embeds a copy of $E(\mathbb{F}_{p_i})$ for each prime p_i dividing N:

$$E(\mathbb{Z}/N\mathbb{Z})\cong E(\mathbb{F}_{p_1})\times E(\mathbb{F}_{p_2})\times \cdots \times E(\mathbb{F}_{p_r}) \times \text{some other stuff}$$

$$E/K: y^2 = x^3 + Ax + B$$

- ▶ What happens if we take $K = \mathbb{Z}/N\mathbb{Z}$, with N a composite integer?
 - K is not a field, and $E(\mathbb{Z}/N\mathbb{Z})$ is **not** a **group**!
 - however, by Chinese remaindering, $E(\mathbb{Z}/N\mathbb{Z})$ embeds a copy of $E(\mathbb{F}_{p_i})$ for each prime p_i dividing N:

$$E(\mathbb{Z}/N\mathbb{Z})\cong E(\mathbb{F}_{p_1})\times E(\mathbb{F}_{p_2})\times \cdots \times E(\mathbb{F}_{p_r}) \times \text{some other stuff}$$

- ▶ In fact, the addition law usually breaks when the result
 - is \mathcal{O} modulo some (but not all) of the p_i 's
 - is not O modulo the other ones

$$E/K: y^2 = x^3 + Ax + B$$

- ▶ What happens if we take $K = \mathbb{Z}/N\mathbb{Z}$, with N a composite integer?
 - K is not a field, and $E(\mathbb{Z}/N\mathbb{Z})$ is **not** a **group**!
 - however, by Chinese remaindering, $E(\mathbb{Z}/N\mathbb{Z})$ embeds a copy of $E(\mathbb{F}_{p_i})$ for each prime p_i dividing N:

$$E(\mathbb{Z}/N\mathbb{Z})\cong E(\mathbb{F}_{p_1})\times E(\mathbb{F}_{p_2})\times \cdots \times E(\mathbb{F}_{p_r}) \times \text{some other stuff}$$

- ▶ In fact, the addition law usually breaks when the result
 - is \mathcal{O} modulo some (but not all) of the p_i 's
 - is not O modulo the other ones
- ▶ In that case, a non-zero, non-invertible element $\xi \in \mathbb{Z}/N\mathbb{Z}$ pops up

$$E/K: y^2 = x^3 + Ax + B$$

- ▶ What happens if we take $K = \mathbb{Z}/N\mathbb{Z}$, with N a composite integer?
 - K is not a field, and $E(\mathbb{Z}/N\mathbb{Z})$ is **not** a **group**!
 - however, by Chinese remaindering, $E(\mathbb{Z}/N\mathbb{Z})$ embeds a copy of $E(\mathbb{F}_{p_i})$ for each prime p_i dividing N:

$$E(\mathbb{Z}/N\mathbb{Z})\cong E(\mathbb{F}_{p_1})\times E(\mathbb{F}_{p_2})\times \cdots \times E(\mathbb{F}_{p_r}) \times \text{some other stuff}$$

- ▶ In fact, the addition law usually breaks when the result
 - is \mathcal{O} modulo some (but not all) of the p_i 's
 - is not O modulo the other ones
- In that case, a non-zero, non-invertible element $\xi \in \mathbb{Z}/N\mathbb{Z}$ pops up
 - \rightarrow Compute $gcd(\xi, N)$ and collect a non-trivial factor!

▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- \triangleright For a given composite integer N:

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- \triangleright For a given composite integer N:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- ► For a given composite integer *N*:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$
 - pick a random point $P \in E(\mathbb{Z}/N\mathbb{Z}) \setminus \{\mathcal{O}\}$

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- \triangleright For a given composite integer N:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$
 - pick a random point $P \in E(\mathbb{Z}/N\mathbb{Z}) \setminus \{\mathcal{O}\}$
 - compute $Q \leftarrow kP$, with $k = \prod_{\pi^e < B_1} \pi^e$ (prime powers less than B_1)

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- ► For a given composite integer *N*:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$
 - pick a random point $P \in E(\mathbb{Z}/N\mathbb{Z}) \setminus \{\mathcal{O}\}$
 - compute $Q \leftarrow kP$, with $k = \prod_{\pi^e \leq B_1} \pi^e$ (prime powers less than B_1) if the group law fails \rightarrow get factor!

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- ► For a given composite integer *N*:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$
 - pick a random point $P \in E(\mathbb{Z}/N\mathbb{Z}) \setminus \{\mathcal{O}\}$
 - compute $Q \leftarrow kP$, with $k = \prod_{\pi^e \leq B_1} \pi^e$ (prime powers less than B_1) if the group law fails \rightarrow get factor!
 - compute πQ for every prime π with $B_1 < \pi \leq B_2$

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- \triangleright For a given composite integer N:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$
 - pick a random point $P \in E(\mathbb{Z}/N\mathbb{Z}) \setminus \{\mathcal{O}\}$
 - compute $Q \leftarrow kP$, with $k = \prod_{\pi^e \leq B_1} \pi^e$ (prime powers less than B_1) if the group law fails \rightarrow get factor!
 - compute πQ for every prime π with $B_1 < \pi \le B_2$ if the group law fails \rightarrow get factor!

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- ► For a given composite integer *N*:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$
 - pick a random point $P \in E(\mathbb{Z}/N\mathbb{Z}) \setminus \{\mathcal{O}\}$
 - compute $Q \leftarrow kP$, with $k = \prod_{\pi^e \leq B_1} \pi^e$ (prime powers less than B_1) if the group law fails \rightarrow get factor!
 - compute πQ for every prime π with $B_1 < \pi \le B_2$ if the group law fails \to get factor!
 - divide N by all factors found, rinse and repeat

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- ► For a given composite integer *N*:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$
 - pick a random point $P \in E(\mathbb{Z}/N\mathbb{Z}) \setminus \{\mathcal{O}\}$
 - compute $Q \leftarrow kP$, with $k = \prod_{\pi^e \leq B_1} \pi^e$ (prime powers less than B_1) if the group law fails \rightarrow get factor!
 - compute πQ for every prime π with $B_1 < \pi \le B_2$ if the group law fails \to get factor!
 - divide N by all factors found, rinse and repeat
- ▶ It is a probabilistic algorithm
 - the larger B_1 and B_2 , the higher the probability of success

- ▶ Parameters: bounds B_1 and B_2 with $0 < B_1 < B_2$
- ► For a given composite integer *N*:
 - pick a random elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$
 - pick a random point $P \in E(\mathbb{Z}/N\mathbb{Z}) \setminus \{\mathcal{O}\}$
 - compute $Q \leftarrow kP$, with $k = \prod_{\pi^e \leq B_1} \pi^e$ (prime powers less than B_1) if the group law fails \rightarrow get factor!
 - compute πQ for every prime π with $B_1 < \pi \le B_2$ if the group law fails \to get factor!
 - divide N by all factors found, rinse and repeat
- ▶ It is a probabilistic algorithm
 - the larger B_1 and B_2 , the higher the probability of success
 - ... but also the more expensive the computation

- ► Easily parallelizable:
 - try many different curves on a single N
 - try to factor several N's in parallel

- ► Easily parallelizable:
 - try many different curves on a single N
 - try to factor several N's in parallel
- ► State-of-the-art implementations:
 - software: EECM-MPFQ [Bernstein et al., 2010]
 - on GPUs: [Bos & Kleinjung, 2012] and [Miele et al., 2014]

- ► Easily parallelizable:
 - try many different curves on a single N
 - try to factor several N's in parallel
- ► State-of-the-art implementations:
 - software: EECM-MPFQ [Bernstein et al., 2010]
 - on GPUs: [Bos & Kleinjung, 2012] and [Miele et al., 2014]
- Manycore processors are potentially good target architectures for ECM

Outline of the talk

- ► ECM in a nutshell
- ► The Kalray MPPA-256 processor
- ► Multiprecision modular arithmetic
- Results and conclusion

► Kalray: French start-up (CEA spin-off), launched in 2008

- ► Kalray: French start-up (CEA spin-off), launched in 2008
- ▶ MPPA (Multi-Purpose Processor Architecture): (co)processor

- ► Kalray: French start-up (CEA spin-off), launched in 2008
- ▶ MPPA (Multi-Purpose Processor Architecture): (co)processor
- ▶ 256: 256 compute cores

- ► Kalray: French start-up (CEA spin-off), launched in 2008
- ▶ MPPA (Multi-Purpose Processor Architecture): (co)processor
- ▶ 256: 256 compute cores
- ► For more info, visit www.kalray.eu (or ask Nicolas Brunie!)

► Global view:

- ► Global view:
 - 4 quad-core processors for I/Os (DDR RAM, PCI-e, etc.)

- ► Global view:
 - 4 quad-core processors for I/Os (DDR RAM, PCI-e, etc.)
 - 4 × 4 compute clusters (CC)

- ► Global view:
 - 4 quad-core processors for I/Os (DDR RAM, PCI-e, etc.)
 - 4 × 4 compute clusters (CC)

toric network-on-chip (NoC)

► Global view:

• 4 quad-core processors for I/Os (DDR RAM, PCI-e, etc.)

4 × 4 compute clusters (CC)

toric network-on-chip (NoC)

frequency: 400 MHz

low power: ≤12-16 W

▶ In each compute cluster:

- ▶ In each compute cluster:
 - 16 compute cores (PE)

- ▶ In each compute cluster:
 - 16 compute cores (PE)
 - + 1 system core (RM)

- ▶ In each compute cluster:
 - 16 compute cores (PE)
 - + 1 system core (RM)
 - 2 MB shared memory

- ► In each compute cluster:
 - 16 compute cores (PE)
 - \bullet + 1 system core (RM)
 - 2 MB shared memory
 - network interfaces

Compute clusters

- ▶ In each compute cluster:
 - 16 compute cores (PE)
 - \bullet + 1 system core (RM)
 - 2 MB shared memory
 - network interfaces
 - NodeOS (POSIX-like) + pthreads

► Kalray-1 (K1) microarchitecture

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- ▶ 5 computation units:

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- 5 computation units:
 - ALU₀ (32 bits)
 - ALU₁ (32 bits)

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- ▶ 5 computation units:
 - ALU₀ (32 bits)
 ALU₁ (32 bits)

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- ▶ 5 computation units:
 - ALU₀ (32 bits)
 ALU₁ (32 bits)
 64-bit ALU
 - MAU (multiply & add)

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- ▶ 5 computation units:
 - ALU₀ (32 bits)
 ALU₁ (32 bits)
 64-bit ALU
 - MAU (multiply & add) / FPU (floating point)

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- ▶ 5 computation units:
 - ALU₀ (32 bits)
 ALU₁ (32 bits)
 64-bit ALU
 - MAU (multiply & add) / FPU (floating point) / ALU_{tiny}

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- ▶ 5 computation units:
 - ALU₀ (32 bits)
 ALU₁ (32 bits)
 64-bit ALU
 - MAU (multiply & add) / FPU (floating point) / ALU_{tiny}
 - LSU (load & store)

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- ▶ 5 computation units:
 - ALU₀ (32 bits)
 ALU₁ (32 bits)
 64-bit ALU
 - MAU (multiply & add) / FPU (floating point) / ALU_{tiny}
 - LSU (load & store) / ALU_{tiny}

- ► Kalray-1 (K1) microarchitecture
- ▶ 32-bit processor:
 - 64 registers of 32 bits each
 - 32- and 64-bit loads / stores
- 5 computation units:
 - ALU₀ (32 bits)
 ALU₁ (32 bits)
 64-bit ALU
 - MAU (multiply & add) / FPU (floating point) / ALU_{tiny}
 - LSU (load & store) / ALU_{tiny}
 - BCU (branch & control)

- ▶ VLIW : Very Long Instruction Word
 - specify at each clock cycle what each computation unit will do
 - instruction word for a computation unit: 32 or 64 bits
 - one "instruction bundle" issued at each cycle: from 32 to 256 bits

- ▶ VLIW : Very Long Instruction Word
 - specify at each clock cycle what each computation unit will do
 - instruction word for a computation unit: 32 or 64 bits
 - one "instruction bundle" issued at each cycle: from 32 to 256 bits
- ▶ 8-stage pipeline (actually, 5 stages for most instructions)

- ▶ VLIW : Very Long Instruction Word
 - specify at each clock cycle what each computation unit will do
 - instruction word for a computation unit: 32 or 64 bits
 - one "instruction bundle" issued at each cycle: from 32 to 256 bits
- ▶ 8-stage pipeline (actually, 5 stages for most instructions)
- ► Low branching penalty:
 - 1 cycle for unconditional branches
 - 2 cycles for conditional branches

- ► Low-latency instructions, along with write-back bypass:
 - 1 cycle for ALU instructions (e.g., 32 or 64-bit addition)
 - 2 cycles for MAU instructions (e.g., muladd 64 \leftarrow 32 \times 32 + 64)

- ► Low-latency instructions, along with write-back bypass:
 - 1 cycle for ALU instructions (e.g., 32 or 64-bit addition)
 - 2 cycles for MAU instructions (e.g., muladd 64 \leftarrow 32 \times 32 + 64)
- Caches:
 - I-cache and D-cache of 8 kB each
 - fast: 32- or 64-bit cached load in 2 cycles

- ► Low-latency instructions, along with write-back bypass:
 - 1 cycle for ALU instructions (e.g., 32 or 64-bit addition)
 - 2 cycles for MAU instructions (e.g., muladd 64 \leftarrow 32 \times 32 + 64)
- Caches:
 - I-cache and D-cache of 8 kB each
 - fast: 32- or 64-bit cached load in 2 cycles
- ► Lots of useful less conventional instructions:
 - zero-penalty hardware loops
 - multiplication of 8 × 8 matrices over F₂
 - arbitrary boolean functions $\{0,1\}^4 \to \{0,1\}^2$, vectorized on 32 bits
 - etc.

- ► Toolchain: k1-gcc, k1-ld, etc.
 - GCC backend for the K1 microarchitecture
 - LIBC port on NodeOS
 - seamless integration in usual C/ASM development environments

- ► Toolchain: k1-gcc, k1-ld, etc.
 - GCC backend for the K1 microarchitecture
 - LIBC port on NodeOS
 - seamless integration in usual C/ASM development environments
- ► An application = (at least) 3 binaries
 - 1 for the host PC (x86-64)
 - 1 for the PCI-e I/O processor (K1)
 - 1 or more for the compute clusters (K1)

- ► Toolchain: k1-gcc, k1-ld, etc.
 - GCC backend for the K1 microarchitecture
 - LIBC port on NodeOS
 - seamless integration in usual C/ASM development environments
- ► An application = (at least) 3 binaries
 - 1 for the host PC (x86-64)
 - 1 for the PCI-e I/O processor (K1)
 - 1 or more for the compute clusters (K1)
- ► A bit of Makefile magic can take care of everything

- ► Debugging:
 - simulator → execution traces
 - simulator + GDB
 - live debugging with GDB through JTAG port

- Debugging:
 - simulator → execution traces
 - simulator + GDB
 - live debugging with GDB through JTAG port
- Optimizing critical code:
 - extensive use of assembly language
 - execution times are very stable: reproducible benchmarks
 - can predict execution times with 1-cycle accuracy

► A few rules should be followed in order to gain a few extra cycles

- ► A few rules should be followed in order to gain a few extra cycles
- ► The Pre-Fetch Buffer (PFB) can only fetch 128 bits per clock cycle from the I-cache
 - \Rightarrow no more than 128 bits per bundle, so as not to starve the PFB

- ► A few rules should be followed in order to gain a few extra cycles
- ► The Pre-Fetch Buffer (PFB) can only fetch 128 bits per clock cycle from the I-cache
 - \Rightarrow no more than 128 bits per bundle, so as not to starve the PFB
- ▶ 1-cycle penalty for a load accessing two different 64-byte cache lines
 - ⇒ keep data aligned on 8-byte (64-bit) boundaries in memory
 - ⇒ pack instruction bundles with nops to maintain code alignment

- ► A few rules should be followed in order to gain a few extra cycles
- ► The Pre-Fetch Buffer (PFB) can only fetch 128 bits per clock cycle from the I-cache
 - \Rightarrow no more than 128 bits per bundle, so as not to starve the PFB
- ▶ 1-cycle penalty for a load accessing two different 64-byte cache lines
 - ⇒ keep data aligned on 8-byte (64-bit) boundaries in memory
 - ⇒ pack instruction bundles with nops to maintain code alignment
- ▶ MAU: accumulator and result have to be pairs of registers r_{2i} : r_{2i+1}
 - ⇒ if need be, use an explicit 64-bit addition to avoid this constraint

Outline of the talk

- ► ECM in a nutshell
- ► The Kalray MPPA-256 processor
- ► Multiprecision modular arithmetic
- Results and conclusion

- ► For a given integer *N* to be factored, ECM requires:
 - additions / subtractions modulo N
 - multiplications / squarings modulo N
 - one inversion modulo N
 - two GCDs

- ► For a given integer *N* to be factored, ECM requires:
 - additions / subtractions modulo N
 - multiplications / squarings modulo N
 - one inversion modulo N
 - two GCDs
- ► Typical size of *N*: from 192 to 512 bits

- ► For a given integer *N* to be factored, ECM requires:
 - additions / subtractions modulo N
 - multiplications / squarings modulo N
 - one inversion modulo N
 - two GCDs
- ► Typical size of *N*: from 192 to 512 bits
- ▶ What we have at our disposal:
 - basic integer arithmetic (addition, multiplication, comparisons)
 - on 32- and 64-bit words

- ► For a given integer *N* to be factored, ECM requires:
 - additions / subtractions modulo N
 - multiplications / squarings modulo N
 - one inversion modulo N
 - two GCDs
- ► Typical size of *N*: from 192 to 512 bits
- ▶ What we have at our disposal:
 - basic integer arithmetic (addition, multiplication, comparisons)
 - on 32- and 64-bit words
- ⇒ Write an optimized library for multiprecision modular arithmetic
 - all low-level functions (add, sub, mul, etc.) in pure ASM
 - higher-level functions (GCD, modular inversion) in C
 - no multi-threading: all computations on a single compute core

Multiprecision representation

▶ Consider $X \in \mathbb{Z}/N\mathbb{Z}$, with N an n-bit integer

Multiprecision representation

- ▶ Consider $X \in \mathbb{Z}/N\mathbb{Z}$, with N an n-bit integer
 - since $0 \le X < N$, it also fits into n bits

Multiprecision representation

- ▶ Consider $X \in \mathbb{Z}/N\mathbb{Z}$, with N an n-bit integer
 - since $0 \le X \le N$, it also fits into *n* bits
 - split X into $n_W = \lceil n/32 \rceil$ 32-bit words (or limbs):

$$X = x_{n_W-1}2^{32(n_W-1)} + \cdots + x_12^{32} + x_0$$

Multiprecision representation

- ▶ Consider $X \in \mathbb{Z}/N\mathbb{Z}$, with N an n-bit integer
 - since $0 \le X \le N$, it also fits into *n* bits
 - split X into $n_W = \lceil n/32 \rceil$ 32-bit words (or limbs):

$$X = x_{n_W-1}2^{32(n_W-1)} + \cdots + x_12^{32} + x_0$$

Multiprecision representation

- ▶ Consider $X \in \mathbb{Z}/N\mathbb{Z}$, with N an n-bit integer
 - since $0 \le X < N$, it also fits into *n* bits
 - split X into $n_W = \lceil n/32 \rceil$ 32-bit words (or limbs):

$$X = x_{n_W-1}2^{32(n_W-1)} + \cdots + x_12^{32} + x_0$$

- ▶ In our library, n_W is fixed at compile-time:
 - uint32_t *X*[*n*_W]
 - supported values: $2 \le n_W \le 16$, i.e. from 64 to 512 bits
 - write (or generate) code optimized for each value of n_W

ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - right-to-left word-wise addition

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - right-to-left word-wise addition
 - need to propagate carry

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - right-to-left word-wise addition
 - need to propagate carry

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - right-to-left word-wise addition
 - need to propagate carry

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - right-to-left word-wise addition
 - need to propagate carry

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - right-to-left word-wise addition
 - need to propagate carry

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - right-to-left word-wise addition
 - need to propagate carry

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - right-to-left word-wise addition
 - need to propagate carry
 - use 64-bit additions to halve the number of operations

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - ld / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)

C	ycle	BCU	LSU	MAU	ALU_1	ALU ₀

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)

cycle	BCU	LSU		MAU	ALU_1	ALU ₀
 t		$x \leftarrow 1d$	8 <i>i</i> [X]			

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)

cycle	BCU	LSU	J	MAU	ALU_1	ALU ₀
			0: [V]			
t + 1		$x \leftarrow 1d$ $y \leftarrow 1d$	8i[X] 8i[Y]			
·						

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)

cycle	BCU	LSU		MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$	8 <i>i</i> [X]			
t+1		$y \leftarrow 1d$	8 <i>i</i> [<i>Y</i>]			
t+2						

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)

cycle	BCU	LSU	J	MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$	8 <i>i</i> [X]			
t+1		$y \leftarrow 1d$	8 <i>i</i> [<i>Y</i>]			
t+2						
t+3					$r \leftarrow \text{add}$	dc x, y

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)

cycle	BCU	LSU		MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$	8 <i>i</i> [X]			
t+1		$y \leftarrow 1d$	8 <i>i</i> [<i>Y</i>]			
t+2						
t+3					$r \leftarrow \text{add}$	dc x, y
t+4		8 <i>i</i> [<i>R</i>]	$\leftarrow \mathtt{sd} \ \mathit{r}$			

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)
 - total latency: $5\lceil n_W/2\rceil + O(1)$ cycles

cycle	BCU	LSU	MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$ 8 $i[X]$			
t+1		$y \leftarrow 1d$ 8 $i[Y]$			
t+2					
t+3				$r \leftarrow \text{add}$	dc x, y
t+4		$8i[R] \leftarrow sd r$			
t+5		$x \leftarrow 1d \ 8(i+1)[X]$			
t+6		$y \leftarrow 1d \ 8(i+1)[Y]$			
t+7					
t + 8				$r \leftarrow \text{add}$	dc x, y
t+9		$8(i+1)[R] \leftarrow sd r$			

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - ld / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)
 - total latency: $5\lceil n_W/2\rceil + O(1)$ cycles

cycle	BCU	LSU	MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$ $8i[X]$			
t+1		$y \leftarrow 1d$ $8i[Y]$			
t+2		$x \leftarrow 1d \ 8(i+1)[X]$			
t+3		$y \leftarrow 1d \ 8(i+1)[Y]$		$r \leftarrow \text{add}$	dc x, y
t+4		$8i[R] \leftarrow sd r$			
t+5				$r \leftarrow \text{add}$	dc x, y
t+6		$8(i+1)[R] \leftarrow \operatorname{sd} r$			
t+7					
t + 8					
t+9					

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)
 - total latency: $5\lceil n_W/2\rceil + O(1)$ cycles

cycle	BCU	LSU	MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$ $8i[X]$			
t+1		$y \leftarrow 1d$ $8i[Y]$			
t+2					
t+3		$x \leftarrow 1d \ 8(i+1)[X]$		$r \leftarrow \text{add}$	dc x, y
t+4		$y \leftarrow 1d \ 8(i+1)[Y]$			
t+5		$8i[R] \leftarrow sd r$			
t+6				$r \leftarrow \text{add}$	dc x, y
t+7					
t + 8		$8(i+1)[R] \leftarrow \operatorname{sd} r$			
t+9					

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)
 - total latency: $5\lceil n_W/2\rceil + O(1)$ cycles

cycle	BCU	LSU	MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$ $8i[X]$		$r \leftarrow \mathtt{add}$	dc x, y
t+1		$y \leftarrow 1d$ $8i[Y]$			
t+2		$8(i-1)[R] \leftarrow \text{sd } r$			
t+3		$x \leftarrow 1d \ 8(i+1)[X]$		$r \leftarrow \mathtt{add}$	dc x, y
t+4		$y \leftarrow 1d \ 8(i+1)[Y]$			
t+5		$8i[R] \leftarrow sd r$			
t+6				$r \leftarrow \text{add}$	dc x, y
t+7					
t + 8		$8(i+1)[R] \leftarrow \operatorname{sd} r$			
t+9					

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)
 - total latency: $5\lceil n_W/2\rceil + O(1)$ cycles

cycle	BCU	LSU	MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$ $8i[X]$		$r \leftarrow \text{add}$	dc x, y
t+1		$y \leftarrow 1d$ $8i[Y]$			
t+2		$8(i-1)[R] \leftarrow \text{sd } r$			
t+3		$x \leftarrow 1d \ 8(i+1)[X]$		$r \leftarrow \text{add}$	dc x, y
t+4		$y \leftarrow 1d \ 8(i+1)[Y]$			
t+5		$8i[R] \leftarrow sd r$			
t+6		$x \leftarrow 1d \ 8(i+2)[X]$		$r \leftarrow \text{add}$	dc x, y
t+7		$y \leftarrow 1d \ 8(i+2)[Y]$			
t + 8		$8(i+1)[R] \leftarrow \operatorname{sd} r$			
t+9				$r \leftarrow \text{add}$	dc x, y

- ightharpoonup addn(R, X, Y): addition of two n_W -word integers X and Y
 - 1d / sd: 64-bit memory accesses
 - adddc: 64-bit addition with carry (on ALU₀ and ALU₁)
 - total latency: $3\lceil n_W/2\rceil + O(1)$ cycles

cycle	BCU	LSU	MAU	ALU_1	ALU ₀
t		$x \leftarrow 1d$ $8i[X]$		$r \leftarrow \mathtt{add}$	dc x, y
t+1		$y \leftarrow 1d$ $8i[Y]$			
t+2		$8(i-1)[R] \leftarrow \operatorname{sd} r$			
t+3		$x \leftarrow 1d 8(i+1)[X]$		$r \leftarrow \text{add}$	dc x, y
t+4		$y \leftarrow 1d 8(i+1)[Y]$			
t+5		$8i[R] \leftarrow sd r$			
t+6		$x \leftarrow 1d 8(i+2)[X]$		$r \leftarrow \text{add}$	dc x, y
t+7		$y \leftarrow 1d 8(i+2)[Y]$			
t + 8		$8(i+1)[R] \leftarrow \operatorname{sd} r$			
t+9		$x \leftarrow 1d 8(i+3)[X]$		$r \leftarrow \text{add}$	dc x, y

ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - schoolbook method: n_W^2 32-by-32-bit subproducts
 - final product fits into 2n_W words
 - order for subproducts: operand scanning (simpler loop control)

ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - n_W-word accumulator for partial products

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - *n*_W-word accumulator for partial products
- ▶ Basic iteration: $Acc \leftarrow Acc + X \times y_i$ (a.k.a. addmul_1 in GMP)

$$-2$$
 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 → Cycle LSU MAU ALU_{0/1}

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - n_W-word accumulator for partial products
- ▶ Basic iteration: $Acc \leftarrow Acc + X \times y_i$ (a.k.a. addmul_1 in GMP)
 - first the even-rank partial products $x_{2i} \times y_i$

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - n_W-word accumulator for partial products
- ▶ Basic iteration: $Acc \leftarrow Acc + X \times y_i$ (a.k.a. addmul_1 in GMP)
 - first the even-rank partial products $x_{2i} \times y_i$
 - then the odd-rank partial products $x_{2j+1} \times y_i$

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - n_W-word accumulator for partial products
- ▶ Basic iteration: $Acc \leftarrow Acc + X \times y_i$ (a.k.a. addmul_1 in GMP)
 - first the even-rank partial products $x_{2i} \times y_i$
 - then the odd-rank partial products $x_{2j+1} \times y_i$
 - constraints on register pairs: explicit accumulation using adddc

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - n_W-word accumulator for partial products
- ▶ Basic iteration: $Acc \leftarrow Acc + X \times y_i$ (a.k.a. addmul_1 in GMP)
 - first the even-rank partial products $x_{2i} \times y_i$
 - then the odd-rank partial products $x_{2j+1} \times y_i$
 - constraints on register pairs: explicit accumulation using adddc
 - Acc₀ requires an extra cycle to store the output carry

- ightharpoonup muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - n_W-word accumulator for partial products
- ▶ Basic iteration: $Acc \leftarrow Acc + X \times y_i$ (a.k.a. addmul_1 in GMP)
 - first the even-rank partial products $x_{2i} \times y_i$
 - then the odd-rank partial products $x_{2j+1} \times y_i$
 - constraints on register pairs: explicit accumulation using adddc
 - Acc₀ requires an extra cycle to store the output carry

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - n_W-word accumulator for partial products
- ▶ Basic iteration: $Acc \leftarrow Acc + X \times y_i$ (a.k.a. addmul_1 in GMP)
 - first the even-rank partial products $x_{2i} \times y_i$
 - then the odd-rank partial products $x_{2j+1} \times y_i$
 - constraints on register pairs: explicit accumulation using adddc
 - Acc₀ requires an extra cycle to store the output carry
 - repeated n_W times

- \blacktriangleright muln(R, X, Y): multiplication of two n_W -word integers X and Y
 - multiplicand X kept in the register file (whence $n_W \leq 16$)
 - multiplier Y processed sequentially, word by word
 - n_W-word accumulator for partial products
- ▶ Basic iteration: $Acc \leftarrow Acc + X \times y_i$ (a.k.a. addmul_1 in GMP)
 - first the even-rank partial products $x_{2i} \times y_i$
 - then the odd-rank partial products $x_{2j+1} \times y_i$
 - constraints on register pairs: explicit accumulation using adddc
 - Acc₀ requires an extra cycle to store the output carry
 - repeated n_W times
- ▶ Total latency: $n_W(n_W + 1) + O(1)$ cycles, ≈ 1 cycle / subproduct

- ▶ Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)

- \triangleright Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$

- ▶ Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$
 - precomputation: $\mu \leftarrow (-N)^{-1} \mod 2^{32}$

- ightharpoonup Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$
 - precomputation: $\mu \leftarrow (-N)^{-1} \mod 2^{32}$
 - repeat *n_W* times:

- ightharpoonup Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$
 - precomputation: $\mu \leftarrow (-N)^{-1} \mod 2^{32}$
 - repeat n_W times:
 - $q \leftarrow (x_0 \cdot \mu) \mod 2^{32}$ // multiplication $32 \leftarrow 32 \times 32$

- \triangleright Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$
 - precomputation: $\mu \leftarrow (-N)^{-1} \mod 2^{32}$
 - repeat n_W times:

- \triangleright Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$
 - precomputation: $\mu \leftarrow (-N)^{-1} \mod 2^{32}$
 - repeat n_W times:

```
 \begin{array}{ll} \bullet & q \leftarrow (x_0 \cdot \mu) \bmod 2^{32} & // \mbox{ multiplication } 32 \leftarrow 32 \times 32 \\ \bullet & Y \leftarrow X + q \cdot N & // \mbox{ addmul\_1; } Y \equiv 0 \mbox{ (mod } 2^{32}) \\ \bullet & X \leftarrow Y/2^{32} & // \mbox{ exact division, for free} \end{array}
```

- ightharpoonup Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$
 - precomputation: $\mu \leftarrow (-N)^{-1} \mod 2^{32}$
 - repeat n_W times:
 - ► $q \leftarrow (x_0 \cdot \mu) \mod 2^{32}$ // multiplica ► $Y \leftarrow X + q \cdot N$ // addmul_1; ► $X \leftarrow Y/2^{32}$ // exa
 - if X > N then $X \leftarrow X N$

```
// multiplication 32 \leftarrow 32 \times 32
// addmul_1; Y \equiv 0 \pmod{2^{32}}
// exact division, for free
```

- ▶ Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$
 - precomputation: $\mu \leftarrow (-N)^{-1} \mod 2^{32}$
 - repeat n_W times:
 - $\begin{array}{ll} \bullet & q \leftarrow (x_0 \cdot \mu) \bmod 2^{32} & // \mbox{ multiplication } 32 \leftarrow 32 \times 32 \\ \bullet & Y \leftarrow X + q \cdot N & // \mbox{ addmul_1; } Y \equiv 0 \mbox{ (mod } 2^{32}) \\ \bullet & X \leftarrow Y/2^{32} & // \mbox{ exact division, for free} \end{array}$
 - if $X \geq N$ then $X \leftarrow X N$
- ▶ Total latency: $n_W(n_W + 3) + O(1)$ cycles, still ≈ 1 cycle / subproduct

- \triangleright Perform computations modulo N (n_W words)
 - addition, subtraction: trivial
 - multiplication: use Montgomery reduction (REDC)
- ▶ REDC : $X \mapsto (X/2^{32n_W}) \mod N$
 - precomputation: $\mu \leftarrow (-N)^{-1} \mod 2^{32}$
 - repeat n_W times:
 - if $X \ge N$ then $X \leftarrow X N$
- ▶ Total latency: $n_W(n_W + 3) + O(1)$ cycles, still ≈ 1 cycle / subproduct
- ▶ Multiplication then REDC: $2n_W(n_W + 2) + O(1)$ cycles
 - for $n_W = 16$, in ASM: 614 cycles
 - same thing in C: 3221 cycles!

Outline of the talk

- ► ECM in a nutshell
- ► The Kalray MPPA-256 processor
- ► Multiprecision modular arithmetic
- Results and conclusion

► ECM with $B_1 = 256$ and $B_2 = 2^{14}$ (cost: 5 381 modular mults)

► ECM with $B_1 = 1024$ and $B_2 = 7 \cdot 2^{14}$ (cost: 22 878 modular mults)

► ECM with $B_1 = 8192$ and $B_2 = 80 \cdot 2^{14}$ (cost: 181852 modular mults)

► ECM with $B_1 = 8192$ and $B_2 = 80 \cdot 2^{14}$ (cost: 181852 modular mults)

▶ ECM with $B_1 = 256$ and $B_2 = 2^{14}$ (cost: 5 381 modular mults)

ightharpoonup ECM with $B_1=1024$ and $B_2=7\cdot 2^{14}$ (cost: 22 878 modular mults)

► ECM with $B_1 = 8192$ and $B_2 = 80 \cdot 2^{14}$ (cost: 181852 modular mults)

- ► Library for efficient multiprecision modular arithmetic:
 - support for precision up to 512 bits
 - carefully optimized critical low-level functions

- ▶ Library for efficient multiprecision modular arithmetic:
 - support for precision up to 512 bits
 - carefully optimized critical low-level functions
 - ullet quasi-optimal cost for quadratic ops: pprox 1 cycle / subproduct

- ▶ Library for efficient multiprecision modular arithmetic:
 - support for precision up to 512 bits
 - carefully optimized critical low-level functions
 - ullet quasi-optimal cost for quadratic ops: pprox 1 cycle / subproduct
- State-of-the-art implementation of ECM:
 - quite fast: 2-3× speedup wrt. dual 8-core Intel CPU,
 2-3× slowdown wrt. high-end GPU

- ▶ Library for efficient multiprecision modular arithmetic:
 - support for precision up to 512 bits
 - carefully optimized critical low-level functions
 - ullet quasi-optimal cost for quadratic ops: pprox 1 cycle / subproduct
- State-of-the-art implementation of ECM:
 - quite fast: 2-3× speedup wrt. dual 8-core Intel CPU,
 2-3× slowdown wrt. high-end GPU
 - ullet energy efficient: $\sim 30 imes$ better than CPU, $\sim 5 imes$ better than GPU

- ▶ Library for efficient multiprecision modular arithmetic:
 - support for precision up to 512 bits
 - carefully optimized critical low-level functions
 - ullet quasi-optimal cost for quadratic ops: pprox 1 cycle / subproduct
- State-of-the-art implementation of ECM:
 - quite fast: 2-3× speedup wrt. dual 8-core Intel CPU,
 2-3× slowdown wrt. high-end GPU
 - ullet energy efficient: $\sim 30 imes$ better than CPU, $\sim 5 imes$ better than GPU
 - more on-chip memory: can tackle larger sizes than GPUs

Thank you for your attention

Questions?

More info:

- Git repo: https://gforge.inria.fr/projects/kalray-ecm
- Paper: https://eprint.iacr.org/2016/365