A DECIMAL MULTIPLE-PRECISION INTERVAL ARITHMETIC LIBRARY

RAIM 2017 - LIP, Lyon
October 25, 2017

Stef Graillat, Clothilde Jeangoudoux, and Christoph Lauter
Arithmetic: Decimal vs Binary

Decimal

- \(a = 10^{-1} \times 9.000 \)
- \(b = \log(a) \)
- \(b = -10^{-1} \times 1.05360515... \)
Arithmetic: Decimal vs Binary

Decimal

\[a = 10^{-1} \times 9.000 \]

\[b = \log(a) \]

\[b = -10^{-1} \times 1.05360515... \]

Binary (here float)

\[\alpha = 2^{-1} \times 1.100110011... \]

\[\beta = \log(\alpha) \]

\[\beta = -2^{-4} \times 1.010111110... \]

Decimal arithmetic

Through binary arithmetic
Arithmetic: Decimal vs Binary

Decimal

\[a = 10^{-1} \times 9.000 \]

\[b = \log(a) \]

\[b = -10^{-1} \times 1.05360515\ldots \]

\[\tilde{b} = -10^{-1} \times 1.05360545\ldots \]

Binary (here float)

\[\alpha = 2^{-1} \times 1.100110011\ldots \]

\[\beta = \log(\alpha) \]

\[\beta = -2^{-4} \times 1.010111110\ldots \]

Through binary arithmetic
Motivations for our work

In what context a decimal multiple-precision interval library may be used?

- Financial applications
- Validation and test of systems subject to strong certification processes:
 - aerospace industry,
 - autonomous car...
Motivations for our work

In what context a decimal multiple-precision interval library may be used?

◆ Financial applications
◆ Validation and test of systems subject to strong certification processes:
 > aerospace industry,
 > autonomous car...

Why use multiple-precision?

◆ multiple-precision arithmetic: in opposition to fixed precision arithmetic, enables the user to choose the precision of each variable.
◆ The precision is only limited by the space and the time needed for the computation.
 > Increasing the precision may increase the accuracy.
Motivations for our work

In what context a decimal multiple-precision interval library may be used?

◆ Financial applications
◆ Validation and test of systems subject to strong certification processes:
 > aerospace industry,
 > autonomous car...

Why use multiple-precision?

◆ multiple-precision arithmetic: in opposition to fixed precision arithmetic, enables the user to choose the precision of each variable.
◆ The precision is only limited by the space and the time needed for the computation.
 > Increasing the precision may increase the accuracy.

Why use interval arithmetic?

◆ interval arithmetic: represent a number with an interval, representable by machine numbers, containing its value. It gives us guarantees on the numerical result.
Our goal

Provide a decimal multiple-precision interval arithmetic through two libraries

- MPD: Multiple Precision Decimal
- MPDI: Multiple Precision Decimal Interval
Our goal

Provide a decimal multiple-precision interval arithmetic through two libraries

- MPD: Multiple Precision Decimal
- MPDI: Multiple Precision Decimal Interval

State of the art libraries

- multiple precision: BigInteger, BigDecimal
- interval arithmetic: JInterval

Our contributions

- Correctly rounded
- Reliable
- Fast
Our goal

Provide a decimal multiple-precision interval arithmetic through two libraries

- MPD: Multiple Precision Decimal
 - Using MPFR and GMP mathematical functions
- MPDI: Multiple Precision Decimal Interval
 - based on MPD the same way MPFI is based on MPFR

- GMP: GNU Multiple Precision Arithmetic Library
- MPFR: Multiple Precision Floating-Point Reliable Library
- MPFI: Multiple Precision Floating-Point Interval Library
MPD and MPDI types

Note on the IEEE Standard for Floating-Point Arithmetic (IEEE-754 2008)

- MPD arithmetic is IEEE 754 compatible, but not compliant (e.g. there is no quantum for now)
- MPD numbers are not normalized: a number does not have a unique representation in MPD

MPD type

\[MPD : 10^F \times n \]

- significand \(n \) is a GMP signed integer,
- exponent \(F \) is an integer,
- additional information structure (NaN, ±\(\infty \), ±0 or number),
- the decimal precision \(k \) in digits

MPDI type

\[MPDI : [\text{left}, \text{right}] \]

- Interval of two MPD numbers \(\text{left} \) and \(\text{right} \)
Outline

1. Introduction
2. Mechanisms behind MPD
3. Mechanisms behind MPDI
4. Benchmark
MPD Library Architecture

- **mpd_cmp**
 - Comparison

- **mpd_add**
 - Addition with `mpz_add`

- **mpd_sub**
 - Subtraction with `mpz_sub`

- **mpd_mul**
 - Multiplication with `mpz_mul`

- **mpd_get_fr**
 - Conversion from decimal to binary

- **mpd_set_fr**
 - Conversion from binary to decimal

- **mpd_div**
 - Division with `mpfr_div`

- **mpd_sqrt**
 - Square root with `mpfr_sqrt`

- **mpd_exp**
 - Exponential with `mpfr_exp`

- **mpd_log**
 - Logarithm with `mpfr_log`
 - with a special treatment near 1

Two central functions
- Conversion: binary → decimal
- Conversion: decimal → binary

Two groups of functions
- with GMP
- with MPFR
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - Enclose α_1 with two values
 - Compare the enclosure of α_1 with the midpoint of $[a, b]$
 - Round α_1 to a

![Diagram showing a and b with a midpoint indicating indecision.](Image)
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - Enclose α_1 with two values
 - Compare the enclosure of α_1 with the midpoint of $[a, b]$
 - Round α_1 to a
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - Enclose α_1 with two values
 - Compare the enclosure of α_1 with the midpoint of $[a, b]$
 - Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - Ziv’s loop
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - Enclose α_1 with two values
 - Compare the enclosure of α_1 with the midpoint of $[a, b]$
 - Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - Ziv’s loop
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - Enclose α_1 with two values
 - Compare the enclosure of α_1 with the midpoint of $[a, b]$
 - Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - Ziv’s loop
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- \(a \) and \(b \) two representable decimal numbers in the current precision
- Convert the binary number \(\alpha_1 \) into \(a \) or \(b \)
 - Enclose \(\alpha_1 \) with two values
 - Compare the enclosure of \(\alpha_1 \) with the midpoint of \([a, b]\)
 - Round \(\alpha_1 \) to \(a \)
- Convert the binary number \(\alpha_2 \) into \(a \) or \(b \)
 - Comparison leads to indecision: increase the precision and compare again
 - Ziv’s loop
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - Enclose α_1 with two values
 - Compare the enclosure of α_1 with the midpoint of $[a, b]$
 - Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - Ziv’s loop
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - Enclose α_1 with two values
 - Compare the enclosure of α_1 with the midpoint of $[a, b]$
 - Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - Ziv’s loop
Conversion algorithm: binary to decimal

Indecision with the rounding mode to the nearest

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - Enclose α_1 with two values
 - Compare the enclosure of α_1 with the midpoint of $[a, b]$
 - Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - Ziv’s loop
Multiplication algorithm

Simple algorithm without conversion

We want to compute $10^F \times n = (10^{F_1} \times n_1) \times (10^{F_2} \times n_2)$

- $F = F_1 + F_2$
- $t = \text{mpz_mul}(n_1, n_2)$
- $\tilde{n} = \text{mpd_set_z}(t)$
- add the exponents
- multiplication of the significand with the GMP function
- Round the result to the decimal precision k
Addition algorithm

Simple algorithm without conversion

We want to compute $10^F \times n = (10^{F_1} \times n_1) + (10^{F_2} \times n_2)$

- if needed, align the two decimal numbers with multiplications (instead of divisions as in binary)
- set the exponent F
- $t = \text{mpz_add}(n_1, n_2)$ add the significands
- $\tilde{n} = \text{mpd_set_z}(t)$ round the result to the decimal precision k
Square root algorithm

Decimal (MPD)

\[a = 10^F \times n \]
with \(k \) digit precision

Binary (MPFR)

\[\text{mpfr_sqrt}() \]

\[e_b = \text{decimal sqrt}(a) \]
with \(\log_2(10) \) \(p \) digit precision

\[\text{mpd_sqrt}(a) \]
with \(k \) digit precision

\[\text{final result} \]
Square root algorithm

Decimal (MPD)

\[a = 10^F \times n \]

with \(k \) digit precision

Binary (MPFR)

\[\alpha = 2^{E_\alpha} \times m_\alpha \]

with \(p = \log_{10}(2) \times k \) bit prec
Square root algorithm

Decimal (MPD)

\[a = 10^F \times n \]
with \(k \) digit precision

conversion

Binary (MPFR)

\[\alpha = 2^{E_\alpha} \times m_\alpha \]
with \(p = \log_{10}(2) \times k \) bit prec

\[\beta = 2^{E_\beta} \times m_\beta \]
with \(p = \log_{10}(2) \times k \) bit prec

\text{mpfr_sqrt}(\alpha)
Square root algorithm

Decimal (MPD)

\[a = 10^F \times n \]
with \(k \) digit precision

\[\tilde{b} = \text{decimal sqrt}(a) \]
with \(\log_2(10) \times p \) digit prec

Binary (MPFR)

\[\alpha = 2^{E_\alpha} \times m_\alpha \]
with \(p = \log_{10}(2) \times k \) bit prec

\[\text{mpfr_sqrt}(\alpha) \]

\[\beta = 2^{E_\beta} \times m_\beta \]
with \(p = \log_{10}(2) \times k \) bit prec

Conversion
Square root algorithm

Decimal (MPD)

\[a = 10^F \times n \]
with \(k \) digit precision

\[\tilde{b} = \text{decimal sqrt}(a) \]
with \(\log_2(10) \times p \) digit prec

Binary (MPFR)

\[\alpha = 2^{E_\alpha} \times m_\alpha \]
with \(p = \log_{10}(2) \times k \) bit prec

\[\beta = 2^{E_\beta} \times m_\beta \]
with \(p = \log_{10}(2) \times k \) bit prec

Ziv’s loop

conversion

\(\text{mpfr_sqrt}(\alpha) \)

conversion

Final result
Square root algorithm

Decimal (MPD)

\[a = 10^F \times n \]
with \(k \) digit precision

\[\tilde{b} = \text{decimal sqrt}(a) \]
with \(\log_2(10) \times p \) digit prec

Binary (MPFR)

\[\alpha = 2^{E_\alpha} \times m_\alpha \]
with \(p = \log_{10}(2) \times k \) bit prec

\[\beta = 2^{E_\beta} \times m_\beta \]
with \(p = \log_{10}(2) \times k \) bit prec

Ziv's loop

\[\checkmark \text{ Proof} \]

Conversion
Square root algorithm

Decimal (MPD)

\[a = 10^F \times n \]
with \(k \) digit precision

\[\tilde{b} = \text{decimal sqrt}(a) \]
with \(\log_2(10) \times p \) digit prec

\[b = \text{mpd_sqrt}(a) \]
with \(k \) digit precision

Binary (MPFR)

\[\alpha = 2^{E_{\alpha}} \times m_{\alpha} \]
with \(p = \log_{10}(2) \times k \) bit prec

\[\beta = 2^{E_{\beta}} \times m_{\beta} \]
with \(p = \log_{10}(2) \times k \) bit prec

conversion

Ziv's loop

\(\checkmark \) Proof

comparison
Logarithm algorithm

\[
\log(a) = \log(\alpha(1 + \varepsilon)) = \log(\alpha) \cdot \left(1 + \frac{1}{\log(\alpha)} \cdot \frac{\log(1 + \varepsilon)}{\varepsilon} \cdot \varepsilon\right)
\]

Problem when \(\alpha \) is around 1

- Afar from 1
 - implement the decimal logarithm with \texttt{mpfr_log} in the same way as the square root

- Around 1
 - compute in decimal \(b = a - 1 \) with \texttt{mpd_sub}
 - convert the decimal \(b \) into the binary \(\beta \) with \texttt{mpd_set_fr}
 - perform the logarithm operation with \texttt{mpfr_log1p}
 - this function implements \(\log 1p(\beta) = \log(1 + \beta) \)
Multiple Precision Decimal Interval

So far we have:

- MPFR: a correctly rounded multiple precision binary library
- MPFI: a correctly rounded interval multiple precision binary library
- MPD: a correctly rounded multiple precision decimal library
Multiple Precision Decimal Interval

So far we have:

- MPFR: a correctly rounded multiple precision binary library
- MPFI: a correctly rounded interval multiple precision binary library
- MPD: a correctly rounded multiple precision decimal library

We want to implement:

- MPDI: a correctly rounded interval multiple precision decimal library
Two solutions:

- Copy MPD methodology
 - convert the decimal interval \([a, b]\) into the binary one \([\alpha, \beta]\)
 - compute the binary result with MPFI functions

- Take inspiration from the MPFI code
 - use MPD functions with directed rounding to compute the decimal interval
List of implemented functions

MPD implementation
- init and clear functions
- set default and current precision
- mpd_set: convert in decimal from a decimal (MPD), a binary floating point (MPFR), a binary integer (GMP).
- mpd_get: convert a decimal into a binary
- arithmetic functions: add, sub, mul, div, sqrt.
- transcendental functions: log, exp.
- comparison functions: cmp, cmp_ui.
- absolute value and negation.

MPDI implementation
- init and clear
- set the prec, set the default prec
- mpdi_set: set a decimal interval MPDI from a decimal number MPD
- arithmetic functions: add, sub, mul, div, sqrt.
- transcendental functions: log, exp.
Outline

1. Introduction
2. Mechanisms behind MPD
3. Mechanisms behind MPDI
4. Benchmark
Do we have the expected output?

Decimal MPD

prec \(k = 8 \)

\[
\begin{align*}
a &= 10^{-1} \times 9.000 \\
b &= \text{mpd}_\log(a) \\
b &= -10^{-1} \times 1.0536052
\end{align*}
\]

Binary MPFR

prec \(p = 24 \)

\[
\begin{align*}
\alpha &= 2^{-1} \times 1.100110011... \\
\beta &= \text{mpfr}_\log(\alpha) \\
\beta &= -2^{-4} \times 1.010111110...
\end{align*}
\]
Do we have the expected output?

Decimal MPD

prec $k = 8$

\[
a = 10^{-1} \times 9.000
\]

\[
b = \text{mpd}_\log(a)
\]

\[
b = -10^{-1} \times 1.0536052
\]

\[
\tilde{b} = -10^{-1} \times 1.0536055
\]

Binary MPFR

prec $p = 24$

\[
\alpha = 2^{-1} \times 1.100110011\ldots
\]

\[
\beta = \text{mpfr}_\log(\alpha)
\]

\[
\beta = -2^{-4} \times 1.010111110\ldots
\]
ADD and MUL execution time

Comparison of decimal ADD algorithms

Comparison of decimal MUL algorithms

Time (s) vs. Precision k for different algorithms:
- mpd
- mpdi
- mpd loop
EXP and LOG execution time

Comparison of decimal EXP algorithms

Comparison of decimal LOG algorithms

precision k

Time (s)

- mpfr
- mpfi
- mpd
- mpdi
Conclusion and future work

Conclusion

- Development of two libraries, MPD and MPDI of a correctly rounded, reliable and fast decimal multiple precision arithmetic.
- Proof of the conversion algorithm
- Implementation of the basic mathematical functions, and the exponential and logarithm

Perspectives

- Add other functions: trigonometric functions (cos, sin, tan...)
- Proof of the other algorithms
- Expand the set of tests
- Source code available on demand
Questions

Thank you!