A DECIMAL MULTIPLE-PRECISION INTERVAL ARITHMETIC LIBRARY

RAIM 2017 - LIP, Lyon October 25, 2017

Stef Graillat, Clothilde Jeangoudoux, and Christoph Lauter

Arithmetic: Decimal vs Binary

Arithmetic: Decimal vs Binary

Arithmetic: Decimal vs Binary

Motivations for our work

In what context a decimal multiple-precision interval library may be used?

- Financial applications
- Validation and test of systems subject to strong certification processes:
 - > aerospace industry,
 - > autonomous car...

Motivations for our work

In what context a decimal multiple-precision interval library may be used?

- Financial applications
- Validation and test of systems subject to strong certification processes:
 - > aerospace industry,
 - > autonomous car...

Why use multiple-precision?

- multiple-precision arithmetic: in opposition to fixed precision arithmetic, enables the user to choose the precision of each variable.
- The precision is only limited by the space and the time needed for the computation.
 - > Increasing the precision may increase the accuracy.

Motivations for our work

In what context a decimal multiple-precision interval library may be used?

- Financial applications
- Validation and test of systems subject to strong certification processes:
 - > aerospace industry,
 - > autonomous car...

Why use multiple-precision?

- multiple-precision arithmetic: in opposition to fixed precision arithmetic, enables the user to choose the precision of each variable.
- The precision is only limited by the space and the time needed for the computation.
 - > Increasing the precision may increase the accuracy.

Why use interval arithmetic?

 interval arithmetic: represent a number with an interval, representable by machine numbers, containing its value. It gives us guarantees on the numerical result.

Our goal

Provide a decimal multiple-precision interval arithmetic through two libraries

- ◆ MPD: Multiple Precision Decimal
- MPDI: Multiple Precision Decimal Interval

Our goal

Provide a decimal multiple-precision interval arithmetic through two libraries

- MPD: Multiple Precision Decimal
- MPDI: Multiple Precision Decimal Interval

State of the art libraries

- multiple precision: BigInteger, BigDecimal
- interval arithmetic: JInterval

Our contributions

- Correctly rounded
- Reliable
- Fast

Our goal

Provide a decimal multiple-precision interval arithmetic through two libraries

- MPD: Multiple Precision Decimal
 - > Using MPFR and GMP mathematical functions
- MPDI: Multiple Precision Decimal Interval
 - > based on MPD the same way MPFI is based on MPFR

- GMP: GNU Multiple Precision Arithmetic Library
- MPFR: Multiple Precision Floating-Point Reliable Library
- MPFI: Multiple Precision Floating-Point Interval Library

MPD and **MPDI** types

Note on the IEEE Standard for Floating-Point Arithmetic (IEEE-754 2008)

- MPD arithmetic is IEEE 754 compatible, but not compliant (e.g. there is no quantum for now)
- MPD numbers are not normalized: a number does not have a unique representation in MPD

MPD type

 $MPD: 10^F \times n$

-

significand *n* is a GMP signed integer,

- exponent F is an integer,
- additional information structure (NaN, $\pm \infty$, ± 0 or number),
- ◆ the decimal precision k in digits

MPDI type

MPDI : [left, right]

Interval of two MPD numbers left and right

Outline

- **Introduction**
- Mechanisms behind MPD
- Mechanisms behind MPDI
- 4 Benchmark

MPD Library Architecture

Indecision with the rounding mode to the nearest

 a and b two representable decimal numbers in the current precision

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - > Ziv's loop

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - > Ziv's loop

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - > Ziv's loop

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - > Ziv's loop

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - > Ziv's loop

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - > Ziv's loop

- a and b two representable decimal numbers in the current precision
- Convert the binary number α_1 into a or b
 - > Enclose α_1 with two values
 - > Compare the enclosure of α_1 with the midpoint of [a, b]
 - > Round α_1 to a
- Convert the binary number α_2 into a or b
 - Comparison leads to indecision: increase the precision and compare again
 - > Ziv's loop

Multiplication algorithm

Simple algorithm without conversion

We want to compute $10^F \times n = (10^{F_1} \times n_1) \times (10^{F_2} \times n_2)$

$$◆$$
 $F = F_1 + F_2$

$$\qquad \qquad \widetilde{n} = \mathbf{mpd_set_z}(t)$$

- multiplication of the significand with the GMP function
- Round the result to the decimal precision k

Addition algorithm

Simple algorithm without conversion

We want to compute $10^F \times n = (10^{F_1} \times n_1) + (10^{F_2} \times n_2)$

- if needed, align the two decimal numbers with multiplications (instead of divisions as in binary)
- set the exponent F
- $t = mpz_add(n_1, n_2)$ add the significands
- $\tilde{n} = \text{mpd_set_z}(t)$ round the result to the decimal precision k

Decimal (MPD)

Binary (MPFR)

 $a = 10^F \times n$ with k digit precision

Logarithm algorithm

$$\log(a) = \log(\alpha(1+\varepsilon)) = \log(\alpha) \cdot \left(1 + \frac{1}{\log(\alpha)} \cdot \frac{\log(1+\varepsilon)}{\varepsilon} \cdot \varepsilon\right)$$

Problem when α is around 1

- Afar from 1
 - > implement the decimal logarithm with mpfr_log in the same way as the square root
- Around 1
 - > compute in decimal b = a 1 with **mpd_sub**
 - > convert the decimal b into the binary β with $\mathbf{mpd_set_fr}$
 - > perform the logarithm operation with mpfr_log1p
 - this function implements $log1p(\beta) = log(1 + \beta)$

Outline

- Introduction
- Mechanisms behind MPD
- Mechanisms behind MPDI
- 4 Benchmark

Multiple Precision Decimal Interval

So far we have:

- MPFR: a correctly rounded multiple precision binary library
- MPFI: a correctly rounded interval multiple precision binary library
- MPD: a correctly rounded multiple precision decimal library

Multiple Precision Decimal Interval

So far we have:

- MPFR: a correctly rounded multiple precision binary library
- MPFI: a correctly rounded interval multiple precision binary library
- MPD: a correctly rounded multiple precision decimal library

We want to implement:

MPDI: a correctly rounded interval multiple precision decimal library

Multiple Precision Decimal Interval

Two solutions:

- Copy MPD methodology
 - > convert the decimal interval [a,b] into the binary one $[\alpha,\beta]$
 - compute the binary result with MPFI functions
- MPFI MPDI

- Take inspiration from the MPFI code
 - > use MPD functions with directed rounding to compute the decimal interval

List of implemented functions

MPD implementation

- init and clear functions
- set default and current precision
- mpd_set: convert in decimal from a decimal (MPD), a binary floating point (MPFR), a binary integer (GMP).
- mpd_get: convert a decimal into a binary
- arithmetic functions: add, sub, mul, div, sqrt.
- transcendental functions: log, exp.
- comparison functions: cmp, cmp_ui.
- absolute value and negation.

MPDI implementation

- init and clear
- set the prec, set the default prec
- mpdi_set: set a decimal interval MPDI from a decimal number MPD
- arithmetic functions: add, sub, mul, div, sqrt.
- transcendental functions: log, exp.

Outline

- **Introduction**
- Mechanisms behind MPD
- Mechanisms behind MPDI
- 4 Benchmark

Do we have the expected output?

Do we have the expected output?

ADD and **MUL** execution time

EXP and LOG execution time

Conclusion and future work

Conclusion

- Development of two libraries, MPD and MPDI of a correctly rounded, reliable and fast decimal multiple precision arithmetic.
- Proof of the conversion algorithm
- Implementation of the basic mathematical functions, and the exponential and logarithm

Perspectives

- Add other functions: trigonometric functions (cos, sin, tan...)
- Proof of the other algorithms
- Expand the set of tests
- Source code available on demand

Questions

Thank you!

