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Linear Time-Invariant Digital Filters

@ Time domain
e

@ Frequency domain
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Frequency specifications

Frequency response (z = /%)

phase
H () = |H ()] e<H (€)
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Filter evaluation

Volkova, Lauter, Hilaire RAIM 2017 October 25, 2017 4 /19



Filter evaluation

n

° y(k):é)b,u(k_i)_;a,- (k — i)

i=1
o { x(k+1) Ax(k) + bu(k)

y(k) = ex(k)+ du(k)
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Filter evaluation

= o y(k) = 3 buu(k— i) = 32 aiy(k— i)
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Filter evaluation

n

° y(k):é)b,-u(k—i)—;a,- (k — i)

i=1

{ x(k+1) = Ax(k)+ bu(k)
y(k) = cx(k)+ du(k)

Typical algorithm : input u(k), state x(k), output y(k)
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Goal: verify an implemented filter

Filter
Implementation Boolean
——)
Frequency Answer
Specifications
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Goal: verify an implemented filter
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Implementation Boolean
Frequency Answer
Specifications
Existing approaches: Our reliable approach:
@ simulations @ no simulations, only proofs

@ approximate magnitude response e rational and interval arithmetic
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Goal: verify an implemented filter

Filter
Implementation Boolean
Frequency Answer
Specifications
Existing approaches: Our reliable approach:
@ simulations @ no simulations, only proofs

@ approximate magnitude response e rational and interval arithmetic

We use Computer Arithmetic to make Signal Processing rigorous. )
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Example

81 =89.278
&2 =43.27"1
g3 =11.277
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Example

g1—89-28
g2—43-27
g3 =11.277

Specifications:

3dB Vw e [O, 7] (passband)

1dB < |H(e™)
' —20dB Vw € [, 7] (stopband)

INIA
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Example

81 =89.278
&2 =43.27"1
g3 =11.277

Specifications:

1020 < |H(e™)| < 10% Vw € [0, 7] (passband)
|H(e™)| < 10720 Vwe [, 7] (stopband)
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Example

81 =89.278
&2 =43.27"1
g3 =11.277

Specifications:

1020 < |H(e™)| < 10% Vw € [0, 7] (passband)
|H(e™)| < 10720 Vwe [, 7] (stopband)

Transfer Function: n _i
) _ Zi:O b,’Z

n Lo—i
Zi:o a;z
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Transfer function verification

Need to show that Vz = e/ w € Q C [0, 7]

B<IH(z) <8
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Transfer function verification

Need to show that Vz = e/ w € Q C [0, 7]

F<|HEZ)P < B
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Transfer function verification

Need to show that Vz = e/ w € Q C [0, 7]
B < HE)P <7

We have that

_|b(@)? _ b(2)bE) _ b(z)b

(
a(2)*  a(z)a(z)  a(2)a(

v(z) and w(z) have real coefficients.

|H(2)P”

Volkova, Lauter, Hilaire RAIM 2017 October 25, 2017 7/ 19



Reducing the problem to a real rational function

2 z=elv
=~ w(2) Vw € Q C [0,7]
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Reducing the problem to a real rational function

»_ v(z) _ = z=ev
B Sw(z)Sﬁ Yw € Q C [0, 7]

&We don't need to deal with complex variables J

Change of variable: t = tan %

z=¢€Y =cosw + jsinw

Volkova, Lauter, Hilaire RAIM 2017 October 25, 2017 8 /19



Reducing the problem to a real rational function

B2 <

&We don't need to deal with complex variables J

Change of variable: t = tan %
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Reducing the problem to a real rational function

,82< V(Z) <B2 Z:ejw
~w(z) © Yw € Q C [0, 7]
. 4
v(1 t2—|—J 2) t:tan%
B2 < 11“';2 e <52 Vw € Q C [0,7]
W( 14¢2 1+t2)
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Reducing the problem to a real rational function

) _ v(z) _ 2 z=ev
s Sw(z)Sﬁ Vw € Q C [0,7]
!
o _ r(t) +x(t) _ 2 t=tan¥
B s Sy +jmin) =7 YweQC[0,7]
—_—————

€R due to |H|?

Polynomials r,s, %, w € R[x] J
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Reducing the problem to a real rational function

,strgt)gﬂz

= = s(t)

Now we work only with reals.
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Reducing the problem to a real rational function

) _ v(z) _ 2 z=elv

s Sw(z)Sﬁ Vw € Q C [0,7]
1

2 r(t) —=2 t=tan¥

Fssm=sr Ywe Q0,7

&Mapping t = tan § maps w onto the whole R J

: L e _ t42-4/t244
Change of variable: { = ===
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Reducing the problem to a real rational function

/82< V(Z) <B2 z:ej‘”
~w(z) © Yw € Q C [0, 7]
(1) N
o r(t) =2 t=tan%
< 2 < 2
/B_St)_ﬂ Yw € Q C [0, 7]
1-2¢ _ t42—t?44
r( ) § =y
£(1-¢) 2 2t
6255(1,2§)§5 veEe=C[0,1]
£(1-¢)
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Reducing the problem to a real rational function

We compute the PGCD(p, q) with a rigorous

heuristic of Char et al.

)

Volkova, Lauter, Hilaire

RAIM 2017

z=elv
Vw € Q C [0,7]
I
t=tan%
Yw € Q C [0, 7]

1

€= t4+2—Vt2+4
2t

Ve €= C0,1]
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Reducing the verification problem to

non-negativity of a polynomial

Need to show V¢ € = C [0, 1] that

2

sy
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Reducing the verification problem to showing the
non-negativity of a polynomial

Need to show V¢ € = C [0, 1] that

2
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Reducing the verification problem to showing the
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Reducing the verification problem to showing the
non-negativity of a polynomial

It suffices to show V¢ € = C [0, 1] that

(&) — g%(§) = 0

Volkova, Lauter, Hilaire RAIM 2017 October 25, 2017 9 /19



Reducing the verification problem to showing the
non-negativity of a polynomial

It suffices to show V¢ € = C [0, 1] that

f(§) =0

AII these transformations are performed exactly with rational arithmetic.J
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Checking non-negativity of a real polynomial

To verify £(§) >0, V€ € = = [£1,&] C [0, 1] we check if
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Checking non-negativity of a real polynomial

To verify £(§) >0, V€ € = = [£1,&] C [0, 1] we check if

(i) f(f) has no zeros /\/\/

F(¢') > 0 for some &' € [€1, &0] ST S

& I3 &
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Checking non-negativity of a real polynomial

To verify £(§) >0, V€ € = = [£1,&] C [0, 1] we check if

(i) f(f) has no zeros /\/\/

f(&") > 0 for some &' € [£1,&7] _‘_‘—’_

& ¢ &2
(i) f(¢) has one zero A‘L‘QF
f(&1) > 0and f(&) >0 — ,
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Checking non-negativity of a real polynomial

To verify £(§) >0, V€ € = = [£1,&] C [0, 1] we check if

(i) f(f) has no zeros /\/\/

f(&") > 0 for some &' € [£1,&7] _‘_‘—’_

& ¢ &2
(i) f(¢) has one zero A‘L‘QF
f(&1) > 0and f(&) >0 — ,

(iii) interval = can be split into subintervals

s.t. (i) or (ii) are satisfied for every subinterval
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Checking non-negativity of a real polynomial

To verify £(§) >0, V€ € = = [£1,&] C [0, 1] we check if

(i) f(f) has no zeros /\/\/

f(&") > 0 for some &' € [£1,&7] _‘_‘—’_

& ¢ &2
(i) f(¢) has one zero A‘L‘QF
f(&1) > 0and f(&) >0 — ,

(iii) interval = can be split into subintervals

s.t. (i) or (ii) are satisfied for every subinterval

We use Sollya tool for the implementation

@ Number of zeros: Sturm's theorem

e Evaluations: interval multiple precision arithmetic
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Wrapping-Up

Does this transfer function verify the frequency specifications?

Yes No
[ (e")[1
B /3\\ //:\\
8 N \://
~ ~ - - w
w1 wa w3 2
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Verifying arbitrary filter implementation

Implemented Transfer
filter Function

Volkova, Lauter, Hilaire RAIM 2017 October 25, 2017 12 /19



Verifying arbitrary filter implementation

Implemented Transfer
filter unreliable ~ | Function
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Verifying arbitrary filter implementation

Implemented v State 7 Transfer
filter Space Function

State-Space system:

S { x(k+1) = Ax(k)+ bu(k)
y(k) = ¢ex(k)+ du(k)
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Verifying arbitrary filter implementation

Implemented v State 7 Transfer
filter Space Function
State-Space system: Corresponding Transfer Function:
S x(k+1) = Ax(k)+ bu(k) H(z) = c(zl — A) b +d
y(k) = ex(k)+ du(k)
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Verifying arbitrary filter implementation

N

Implemented v State Transfer
filter Space unreliable Function
State-Space system: Corresponding Transfer Function:

S{ x(k+1) = Ax(k)+ bu(k) H(z) = c(zl - VEV )b+ d
y(k) = ¢ex(k)+ du(k)
can be approximated using the
eigendecomposition of A = VEV !
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Verifying arbitrary filter implementation

N

Implemented v State Transfer
filter Space unreliable Function
State-Space system: Corresponding Transfer Function:

S{ x(k+1) = Ax(k)+ bu(k) H(z) = c(zl - VEV )b+ d
y(k) = ¢ex(k)+ du(k)
can be approximated using the
eigendecomposition of A = VEV !

Need to:

o Compute an approximation ﬁ(z) with arbitrary precision (mpmath)

@ Exhibit a reliable bound on the approximation error ’(H — ﬁ) (ef“)’
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

S
?
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

Volkova, Lauter, Hilaire RAIM 2017 October 25, 2017 13 /19



Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

s. 8
\ AN
H H
Transformation from H to S is exact:
| by — a1bo
2 = /b\ =
1
—a, 0 0 b, — anbo
c=(10 - 0 d = by
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

S.— § = AS
|
H H

DifFerence of filters is defined as:
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

N

H — H = AH
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

N

H — H = AH
Relation between AS and AH:

‘(H - ﬁ) (ejw)’ < ({AS)), Vw e [0,21]

where ((AS)) is the Worst-Case Peak Gain of the system AS.
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

N

H — H = AH
Relation between AS and AH:

‘(H - ﬁ) (ejw)’ < ((AS)), Vw € [0,27]
where ((AS)) is the Worst-Case Peak Gain of the system AS.

We can evaluate ((AS)) with a priori error ¢ [ARITH2015].
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

N

H — H = AH
Relation between AS and AH:

‘(H - ﬁ) (ejw)’ < ((AS)), Vw € [0,27]
where ((AS)) is the Worst-Case Peak Gain of the system AS.
We can evaluate ((AS)) with a priori error ¢ [ARITH2015].

We obtain a multiple precision approximation H on the transfer function
with a reliable error bound.
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Verifying a LTI filter implementation

|H (e

Taking approximation error into account

Narrow the bounds by © = ((AS)) + ¢ and verify the approximation ﬁ(z)
against updated specifications:

B+0©< ‘ﬁ(ei“)] <B-©, Vweq
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Numerical results: example 1

Filter implementation:

g1 =289.278
g2:43-2 !
g3 =11-277

Specifications:

1020 < |H(e™)| < 1020 Vw € [0, 757  (passband)
|H(e)| < 1073 Vw e [3m,7] (stopband)

Verification result: implemented filter passed the verification against
frequency specifications
Verification time: 1.9's
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Numerical results: example 2

Filter implementation: 14t order bandpass filter
Specifications:

H(e™)| < —80dB Vw € [0, 17kHz] (stopband)
0dB < |H(e“)| < 1—-107%*dB Vw € [21kHz,25kHz] (passband)
H(e™)| < —80dB Vw € [27kHz, 30kHz] (stopband)

Verification result: implemented filter does not pass the verification
against frequency constraints
Verification time: 53 s
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Numerical results: example 2

Filter implementation: 14t order bandpass filter

Verification result: implemented filter does not pass the verification
against frequency constraints

Verification time: 53 s

Frequency response:

—201}
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Amplitude, dB
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Frequency, kHz
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Numerical results: example 2

Filter implementation: 14t order bandpass filter

Verification result: implemented filter does not pass the verification
against frequency constraints

Verification time: 53 s

Frequency response:

—0.5

Amplitude, dB

21 22 23 24 25
Frequency, kHz
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Numerical results: example 2

Filter implementation: 14t order bandpass filter

Verification result: implemented filter does not pass the verification
against frequency constraints
Verification time: 53 s

Frequency response:

Amplitude, dB

i

226 226

. 225 .
21 22 23 24 25

Frequency, kHz
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Numerical results: example 3

Verification of the 9t" order FIR filter from Silviu's presentation:
o coefficients quantized to 7 bits
@ error on the transfer function is roughly 0.047

e passband [0, 1], stopband [0.57, ]
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Numerical results: example 3

Verification of the 9t" order FIR filter from Silviu's presentation:
o coefficients quantized to 7 bits
@ error on the transfer function is roughly 0.047
e passband [0, 1], stopband [0.57, ]

Result:

Overall check okay: true
Computing this result took 7209ms
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Conclusion and Perspectives

Conclusion:

Reliable a posteriori verification of any implemented linear filter
Multiple precision approximation of any filter's transfer function

Approximation errors of the transfer function are fully accounted for

Algorithm implemented using a combination of rational and interval
arithmetic in Sollya

@ Use-cases: verification and comparison of implementations, verification
on design-stage, verification of design methods
Perspectives:
@ Improve algorithm timings
@ Prove our implementation with Coq

@ Exploit information on the problematic frequencies for more robust
design and implementation
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Thank youl
Questions?
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Transfer Function of a State-Space

Transfer function of a single-input single-output state-space S:
H(z)=c(zl — A 'b+d

Using the eigendecomposition A = VEV L

H(z) = 28 +d
P(z) = 3 (eV)i(v2b) [z~ M)
i—1 i

Q2 =[]z-N)
j=1

We compute an approximation ﬁ(z) in Multiple Precision arithmetic. J
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Numerical results

Input: four realizations of the same filter
Problem: verify realizations after coefficient quantization to 32/16/8 bits

Results:
wordlength 32 16 8
DFIIt rr.13rg|n v unstable  unstable
time 12.49s - -
i 4.68e-3 dB
» DFIIt rrjargln v v 68e
time 13.12s 4.19s 104.01s
State-Space  margin 6.16e-10 dB v 6.71e-1 dB
Balanced time 12.27s 18.18s 92.05s
: margin 3.80e-10 dB v 1.73e-2 dB
Lattice W
arHee TIaYE Time 920885 458  200.83s
RAIM 2017

October 25, 2017 2/4



Numerical results:

Input: four simple frequency specifications
Problem: Verify and compare transfer function design methods.
Results: comparison of SciPy in Python and Matlab

Butterworth ~ Chebyshev Elliptic
margin (dB) margin (dB) margin (dB)
Matlab 1.29e-17 7.93e-17 v
lowpass .
SciPy 2.14e-15 4 .48e-2 4.48e-2
: Matlab 2.77e-16 6.94e-17 4.48e-2
highpass -
SciPy 3.02e-15 2.29e-16 4.48e-2
Matlab 3.04e-17 v v
bandpass .
SciPy v 4.48e-2 4.48e-2
Matlab 4.59%-16 3.09e-15 v
bandstop )
SciPy v 6.36e-15 7.02e-6
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Verification of specifications

Sturm'’s technique

Sturm'’s sequence is a sequence of polynomials pg(x), ..., pm(x):

0= —rem(pm-1,Pm)
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