Reliable verification of digital implemented filters against frequency specifications

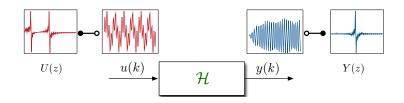
Anastasia Volkova

Christoph Lauter, Thibault Hilaire Sorbonne Universités, UPMC, LIP6

> RAIM 2017 Lyon, October 24-26, 2017

Linear Time-Invariant Digital Filters

Time domain



Frequency domain

$$H(z) = \frac{\sum\limits_{i=0}^{n} b_i z^{-i}}{\sum\limits_{i=0}^{n} a_i z^{-i}}, \quad z \in \mathbb{C}, \ a_i, b_i \in \mathbb{R}$$

Frequency specifications

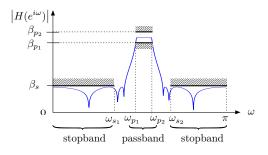
Frequency response
$$(z=e^{j\omega})$$

$$H\left(e^{j\omega}\right) = \underbrace{\left|H\left(e^{j\omega}\right)\right|}_{\text{magnitude}} e^{\underbrace{\angle H\left(e^{j\omega}\right)}_{\text{phase}}}$$

Frequency specifications

Frequency response $(z = e^{j\omega})$

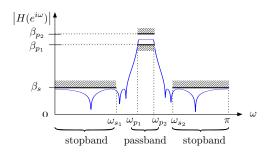
$$H\left(e^{j\omega}\right) = \underbrace{\left|H\left(e^{j\omega}\right)\right|}_{\text{magnitude}} e^{\underbrace{AH\left(e^{j\omega}\right)}_{\text{phase}}}$$



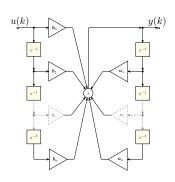
Frequency specifications

Frequency response $(z = e^{j\omega})$

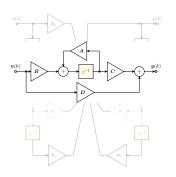
$$H\left(e^{j\omega}\right) = \underbrace{\left|H\left(e^{j\omega}\right)\right|}_{\text{magnitude}} e^{\underbrace{AH\left(e^{j\omega}\right)}_{\text{phase}}}$$



$$\underline{\beta} \le |H(e^{i\omega})| \le \overline{\beta}, \quad \forall \omega \in [\omega_1, \omega_2] \subseteq [0, \pi]$$

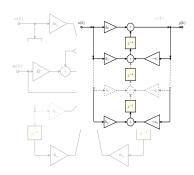


•
$$y(k) = \sum_{i=0}^{n} b_i u(k-i) - \sum_{i=1}^{n} a_i y(k-i)$$



•
$$y(k) = \sum_{i=0}^{n} b_i u(k-i) - \sum_{i=1}^{n} a_i y(k-i)$$

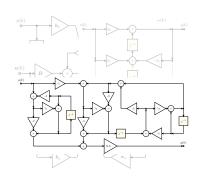
$$\bullet \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) & = & \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) & = & \boldsymbol{c}\boldsymbol{x}(k) + d\boldsymbol{u}(k) \end{array} \right.$$



•
$$y(k) = \sum_{i=0}^{n} b_i u(k-i) - \sum_{i=1}^{n} a_i y(k-i)$$

$$\bullet \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) & = & \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) & = & \boldsymbol{c}\boldsymbol{x}(k) + d\boldsymbol{u}(k) \end{array} \right.$$

• . .



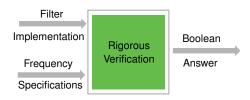
•
$$y(k) = \sum_{i=0}^{n} b_i u(k-i) - \sum_{i=1}^{n} a_i y(k-i)$$

$$\bullet \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) & = & \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) & = & \boldsymbol{c}\boldsymbol{x}(k) + d\boldsymbol{u}(k) \end{array} \right.$$

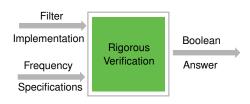
• . .

Typical algorithm: input u(k), state x(k), output y(k)

Goal: verify an implemented filter



Goal: verify an implemented filter



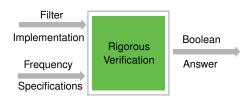
Existing approaches:

- simulations
- approximate magnitude response

Our reliable approach:

- no simulations, only proofs
- rational and interval arithmetic

Goal: verify an implemented filter



Existing approaches:

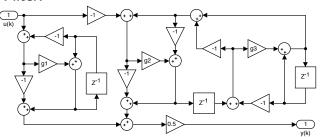
- simulations
- approximate magnitude response

Our reliable approach:

- no simulations, only proofs
- rational and interval arithmetic

We use Computer Arithmetic to make Signal Processing rigorous.

Filter:

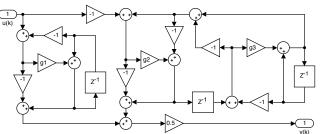


$$g_1 = 89 \cdot 2^{-8}$$

$$g_2 = 43 \cdot 2^{-7}$$

$$g_3=11\cdot 2^{-7}$$

Filter:



$$g_1 = 89 \cdot 2^{-8}$$

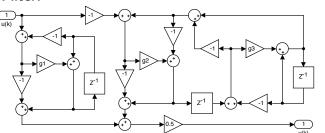
$$g_2 = 43 \cdot 2^{-7}$$

$$g_3 = 11 \cdot 2^{-7}$$

Specifications:

$$\left\{ \begin{array}{ll} 1 \mathrm{dB} \leq & \left| H(e^{i\omega}) \right| \leq & 3 \mathrm{dB} \quad \forall \omega \in [0, \frac{1}{10}\pi] \quad \text{(passband)} \\ \left| H(e^{i\omega}) \right| \leq & -20 \mathrm{dB} \quad \forall \omega \in [\frac{3}{10}\pi, \pi] \quad \text{(stopband)} \end{array} \right.$$

Filter:



$$g_1 = 89 \cdot 2^{-8}$$

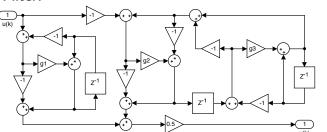
$$g_2 = 43 \cdot 2^{-7}$$

$$g_3 = 11 \cdot 2^{-7}$$

Specifications:

$$\left\{ \begin{array}{ll} 10^{\frac{1}{20}} \leq & \left| H(e^{i\omega}) \right| \leq & 10^{\frac{3}{20}} & \forall \omega \in [0,\frac{1}{10}\pi] & \text{(passband)} \\ & \left| H(e^{i\omega}) \right| \leq & 10^{-\frac{20}{20}} & \forall \omega \in [\frac{3}{10}\pi,\pi] & \text{(stopband)} \end{array} \right.$$

Filter:



$$g_1 = 89 \cdot 2^{-8}$$

$$g_2 = 43 \cdot 2^{-7}$$

$$g_3=11\cdot 2^{-7}$$

Specifications:

$$\left\{ \begin{array}{ll} 10^{\frac{1}{20}} \leq & \left| H(e^{i\omega}) \right| \leq & 10^{\frac{3}{20}} & \forall \omega \in [0,\frac{1}{10}\pi] & \text{(passband)} \\ & \left| H(e^{i\omega}) \right| \leq & 10^{-\frac{20}{20}} & \forall \omega \in [\frac{3}{10}\pi,\pi] & \text{(stopband)} \end{array} \right.$$

Transfer Function:

$$H(z) = \frac{\sum_{i=0}^{n} b_i z^{-i}}{\sum_{i=0}^{n} a_i z^{-i}}$$

Transfer function verification

Need to show that
$$\forall z=e^{j\omega}, \omega\in\Omega\subset[0,\pi]$$

$$\underline{\beta} \leq |H(z)| \leq \overline{\beta}$$

Transfer function verification

Need to show that
$$\forall z=\mathrm{e}^{\mathrm{j}\omega},\omega\in\Omega\subset[0,\pi]$$

$$\underline{\beta}^2 \le |H(z)|^2 \le \overline{\beta}^2$$

Transfer function verification

Need to show that $\forall z = e^{j\omega}, \omega \in \Omega \subset [0,\pi]$

$$\underline{\beta}^2 \le |H(z)|^2 \le \overline{\beta}^2$$

We have that

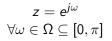
$$|H(z)|^2 = \frac{|b(z)|^2}{|a(z)|^2} = \frac{b(z)b(\overline{z})}{a(z)\overline{a(\overline{z})}} = \frac{b(z)b(\frac{1}{z})}{a(z)a(\frac{1}{z})} =: \frac{v(z)}{w(z)},$$

v(z) and w(z) have real coefficients.

$$\underline{\beta}^2 \le \frac{v(z)}{w(z)} \le \overline{\beta}^2$$

$$z = e^{j\omega}$$
$$\forall \omega \in \Omega \subseteq [0, \pi]$$

$$\underline{\beta}^2 \le \frac{v(z)}{w(z)} \le \overline{\beta}^2$$

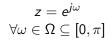


We don't need to deal with complex variables

Change of variable: $t = \tan \frac{\omega}{2}$

$$z = e^{j\omega} = \cos\omega + j\sin\omega$$

$$\underline{\beta}^2 \le \frac{v(z)}{w(z)} \le \overline{\beta}^2$$



We don't need to deal with complex variables

Change of variable: $t = \tan \frac{\omega}{2}$

$$z = e^{j\omega} = \frac{1 - t^2}{1 + t^2} + j\frac{2t}{1 + t^2}$$

$$\underline{\beta}^2 \le \frac{v(z)}{w(z)} \le \overline{\beta}^2$$

$$\underline{\beta}^2 \le \frac{v(\frac{1-t^2}{1+t^2} + j\frac{2t}{1+t^2})}{w(\frac{1-t^2}{1+t^2} + j\frac{2t}{1+t^2})} \le \overline{\beta}^2$$

$$\begin{aligned} z &= \mathrm{e}^{\mathrm{j}\omega} \\ \forall \omega \in \Omega \subseteq [0,\pi] \\ \downarrow \\ t &= \tan \frac{\omega}{2} \\ \forall \omega \in \Omega \subseteq [0,\pi] \end{aligned}$$

$$\underline{\beta}^2 \leq \frac{v(z)}{w(z)} \leq \overline{\beta}^2$$

$$\underline{\beta^2} \le \underbrace{\frac{r(t) + j \mathbf{x}(t)}{s(t) + j \mathbf{u}(t)}}_{\in \mathbb{R} \text{ due to } |H|^2} \le \overline{\beta}^2$$

$$\begin{aligned} z &= e^{j\omega} \\ \forall \omega \in \Omega \subseteq [0,\pi] \\ \downarrow \\ t &= \tan \frac{\omega}{2} \\ \forall \omega \in \Omega \subseteq [0,\pi] \end{aligned}$$

 $igoplus Polynomials \ r, s, ж, щ \in \mathbb{R}[x]$

$$\underline{\beta}^2 \le \frac{v(z)}{w(z)} \le \overline{\beta}^2$$

$$\underline{\beta}^2 \leq \frac{r(t)}{s(t)} \leq \overline{\beta}^2$$

$$\begin{aligned} z &= e^{j\omega} \\ \forall \omega \in \Omega \subseteq [0,\pi] \\ \downarrow \\ t &= \tan \frac{\omega}{2} \\ \forall \omega \in \Omega \subseteq [0,\pi] \end{aligned}$$

Now we work only with reals.

$$\underline{\beta}^2 \le \frac{v(z)}{w(z)} \le \overline{\beta}^2$$

$$\underline{\beta}^2 \leq \frac{r(t)}{s(t)} \leq \overline{\beta}^2$$

$$\begin{aligned} z &= e^{j\omega} \\ \forall \omega \in \Omega \subseteq [0,\pi] \\ \downarrow \\ t &= \tan \frac{\omega}{2} \\ \forall \omega \in \Omega \subseteq [0,\pi] \end{aligned}$$

Mapping $t= anrac{\omega}{2}$ maps ω onto the whole $\mathbb R$

Change of variable: $\xi = \frac{t+2-\sqrt{t^2+4}}{2t}$

$$\underline{\beta^2} \le \frac{v(z)}{w(z)} \le \overline{\beta}^2$$

$$\underline{\beta}^2 \leq \frac{r(t)}{s(t)} \leq \overline{\beta}^2$$

$$\underline{\beta}^2 \leq \frac{r(\frac{1-2\xi}{\xi(1-\xi)})}{s(\frac{1-2\xi}{\xi(1-\xi)})} \leq \overline{\beta}^2$$

$$z = e^{j\omega}$$

$$\forall \omega \in \Omega \subseteq [0, \pi]$$

$$\downarrow$$

$$t = \tan \frac{\omega}{2}$$

$$\forall \omega \in \Omega \subseteq [0, \pi]$$

$$\downarrow$$

$$\xi = \frac{t + 2 - \sqrt{t^2 + 4}}{2t}$$

$$\forall \xi \in \Xi \subseteq [0, 1]$$

$$\underline{\beta}^2 \le \frac{v(z)}{w(z)} \le \overline{\beta}^2$$
$$\underline{\beta}^2 \le \frac{r(t)}{s(t)} \le \overline{\beta}^2$$

$$\underline{\beta}^2 \le \frac{p(\xi)}{q(\xi)} \le \overline{\beta}^2$$

We compute the PGCD(p, q) with a rigorous heuristic of Char et al.

$$\begin{split} z &= e^{j\omega} \\ \forall \omega \in \Omega \subseteq [0,\pi] \\ \downarrow \\ t &= \tan \frac{\omega}{2} \\ \forall \omega \in \Omega \subseteq [0,\pi] \\ \downarrow \\ \xi &= \frac{t+2-\sqrt{t^2+4}}{2t} \\ \forall \xi \in \Xi \subseteq [0,1] \end{split}$$

$$\underline{\beta}^2 \leq \frac{p(\xi)}{q(\xi)} \leq \overline{\beta}^2$$

$$\underline{\beta}^2 - \frac{\underline{\beta}^2 + \overline{\beta}^2}{2} \leq \underline{p(\xi)} - \frac{\underline{\beta}^2 + \overline{\beta}^2}{2} \leq \overline{\beta}^2 - \frac{\underline{\beta}^2 + \overline{\beta}^2}{2}$$

$$-\frac{\overline{\beta}^2 - \underline{\beta}^2}{2} \leq \frac{p(\xi) - \left(\underline{\beta}^2 + \overline{\beta}^2\right) q(\xi)}{2q(\xi)} \leq \frac{\overline{\beta}^2 - \underline{\beta}^2}{2}$$

$$-1 \leq \frac{2}{\overline{\beta}^2 - \underline{\beta}^2} \left(\frac{p(\xi) - \left(\underline{\beta}^2 + \overline{\beta}^2\right) q(\xi)}{2q(\xi)} \right) \leq 1$$

$$-1 \leq \frac{g(\xi)}{h(\xi)} \leq 1$$

$$\frac{g^2(\xi)}{h^2(\xi)} \leq 1$$

It suffices to show $\forall \xi \in \Xi \subseteq [0,1]$ that

$$h^2(\xi) - g^2(\xi) \ge 0$$

It suffices to show $\forall \xi \in \Xi \subseteq [0,1]$ that

$$f(\xi) \geq 0$$

All these transformations are performed exactly with rational arithmetic.

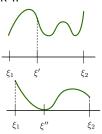
To verify $f(\xi) \geq 0$, $\forall \xi \in \Xi = [\xi_1, \xi_2] \subseteq [0, 1]$ we check if

To verify $f(\xi) \geq 0$, $\forall \xi \in \Xi = [\xi_1, \xi_2] \subseteq [0, 1]$ we check if

(i) $f(\xi)$ has no zeros $f(\xi') > 0$ for some $\xi' \in [\xi_1, \xi_2]$

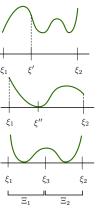
To verify $f(\xi) \geq 0$, $\forall \xi \in \Xi = [\xi_1, \xi_2] \subseteq [0, 1]$ we check if

- (i) $f(\xi)$ has no zeros $f(\xi') > 0$ for some $\xi' \in [\xi_1, \xi_2]$
- (ii) $f(\xi)$ has one zero $f(\xi_1) > 0$ and $f(\xi_2) > 0$



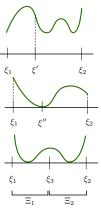
To verify $f(\xi) \geq 0$, $\forall \xi \in \Xi = [\xi_1, \xi_2] \subseteq [0, 1]$ we check if

- (i) $f(\xi)$ has no zeros $f(\xi') > 0$ for some $\xi' \in [\xi_1, \xi_2]$
- (ii) $f(\xi)$ has one zero $f(\xi_1) > 0$ and $f(\xi_2) > 0$
- (iii) interval Ξ can be split into subintervals s.t. (i) or (ii) are satisfied for every subinterval



To verify $f(\xi) \geq 0$, $\forall \xi \in \Xi = [\xi_1, \xi_2] \subseteq [0, 1]$ we check if

- (i) $f(\xi)$ has no zeros $f(\xi') > 0$ for some $\xi' \in [\xi_1, \xi_2]$
- (ii) $f(\xi)$ has one zero $f(\xi_1) > 0$ and $f(\xi_2) > 0$
- (iii) interval Ξ can be split into subintervals s.t. (i) or (ii) are satisfied for every subinterval



We use Sollya tool for the implementation

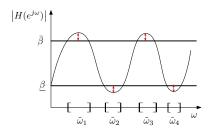
- Number of zeros: Sturm's theorem
- Evaluations: interval multiple precision arithmetic

Wrapping-Up

Does this transfer function verify the frequency specifications?

Yes

No



State-Space system:

$$S \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) & = & \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) & = & \boldsymbol{c}\boldsymbol{x}(k) + d\boldsymbol{u}(k) \end{array} \right.$$

State-Space system:

$$S \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) & = & \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) & = & \boldsymbol{c}\boldsymbol{x}(k) + \boldsymbol{d}\boldsymbol{u}(k) \end{array} \right.$$

Corresponding Transfer Function:

$$H(z) = \boldsymbol{c}(z\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{b} + d$$

State-Space system:

$$S \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) &=& \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) &=& \boldsymbol{c}\boldsymbol{x}(k) + d\boldsymbol{u}(k) \end{array} \right.$$

Corresponding Transfer Function:

$$H(z) = \boldsymbol{c}(z\boldsymbol{I} - \boldsymbol{V}\boldsymbol{E}\boldsymbol{V}^{-1})^{-1}\boldsymbol{b} + d$$

can be approximated using the eigendecomposition of ${\pmb A} = {\pmb V} {\pmb E} {\pmb V}^{-1}$

State-Space system:

$$S \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) & = & \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) & = & \boldsymbol{c}\boldsymbol{x}(k) + \boldsymbol{d}\boldsymbol{u}(k) \end{array} \right.$$

Corresponding Transfer Function:

$$H(z) = \boldsymbol{c}(z\boldsymbol{I} - \boldsymbol{V}\boldsymbol{E}\boldsymbol{V}^{-1})^{-1}\boldsymbol{b} + d$$

can be approximated using the eigendecomposition of $\mathbf{A} = \mathbf{VEV}^{-1}$

Need to:

- Compute an approximation $\widehat{H}(z)$ with arbitrary precision (mpmath)
- ullet Exhibit a reliable bound on the approximation error $\left|\left(H-\widehat{H}
 ight)(e^{j\omega})
 ight|$

Computing the transfer function H(z) of the state-space system S:

S

?

H

Computing the transfer function H(z) of the state-space system S:

Computing the transfer function H(z) of the state-space system S:

 ${\overset{oldsymbol{\circ}}{\mathbb{O}}}$ Transformation from \widehat{H} to $\widehat{\mathcal{S}}$ is exact:

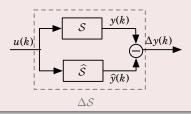
$$\widehat{\mathbf{A}} = \begin{pmatrix} -\widehat{a}_1 & 1 & & \\ \vdots & & \ddots & \\ \vdots & & & 1 \\ -\widehat{a}_n & 0 & \dots & 0 \end{pmatrix} \quad \widehat{\mathbf{b}} = \begin{pmatrix} \widehat{b}_1 - \widehat{a}_1 \widehat{b}_0 \\ \vdots \\ \widehat{b}_n - \widehat{a}_n \widehat{b}_0 \end{pmatrix}$$

$$\widehat{\boldsymbol{c}} = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} \qquad \widehat{d} = \widehat{b}_0$$

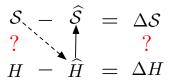
Computing the transfer function H(z) of the state-space system S:

$$\begin{array}{ccc} \mathcal{S}, & - & \widehat{\mathcal{S}} & = & \Delta \mathcal{S} \\ ? & & & \\ H & & \widehat{H} \end{array}$$

Difference of filters is defined as:



Computing the transfer function H(z) of the state-space system S:



Computing the transfer function H(z) of the state-space system S:

$$\begin{array}{cccc} \mathcal{S}, & -& \widehat{\mathcal{S}} & = & \Delta \mathcal{S} \\ ? & & & ? \\ H & -& \widehat{H} & = & \Delta H \end{array}$$

Relation between ΔS and ΔH :

$$\left|\left(H-\widehat{H}\right)\left(e^{j\omega}\right)\right| \leq \left\langle\left\langle \Delta \mathcal{S}\right\rangle\right\rangle, \quad \forall \omega \in [0,2\pi]$$

where $\langle\langle\Delta\mathcal{S}\rangle\rangle$ is the Worst-Case Peak Gain of the system $\Delta\mathcal{S}$.

Computing the transfer function H(z) of the state-space system S:

$$\begin{array}{cccc} \mathcal{S}, & -& \widehat{\mathcal{S}} & = & \Delta \mathcal{S} \\ ? & & & ? \\ H & -& \widehat{H} & = & \Delta H \end{array}$$

Relation between ΔS and ΔH :

$$\left|\left(H-\widehat{H}\right)\left(e^{j\omega}\right)\right| \leq \left\langle\left\langle \Delta \mathcal{S}\right\rangle\right\rangle, \quad \forall \omega \in [0,2\pi]$$

where $\langle\langle\Delta\mathcal{S}\rangle\rangle$ is the Worst-Case Peak Gain of the system $\Delta\mathcal{S}$.

We can evaluate $\langle\langle\Delta\mathcal{S}\rangle\rangle$ with a priori error ε [ARITH2015].

Computing the transfer function H(z) of the state-space system S:

$$\begin{array}{cccc} \mathcal{S} & - & \widehat{\mathcal{S}} & = & \Delta \mathcal{S} \\ ? & & & ? \\ H & - & \widehat{H} & = & \Delta H \end{array}$$

Relation between ΔS and ΔH :

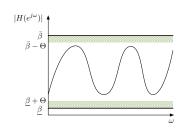
$$\left|\left(H-\widehat{H}\right)\left(e^{j\omega}\right)\right| \leq \left\langle\left\langle \Delta\mathcal{S}\right
angle
ight
angle, \quad orall \omega \in [0,2\pi]$$

where $\langle\langle\Delta\mathcal{S}\rangle\rangle$ is the Worst-Case Peak Gain of the system $\Delta\mathcal{S}$.

We can evaluate $\langle\langle\Delta\mathcal{S}\rangle\rangle$ with a priori error ε [ARITH2015].

We obtain a multiple precision approximation \widehat{H} on the transfer function with a reliable error bound.

Verifying a LTI filter implementation

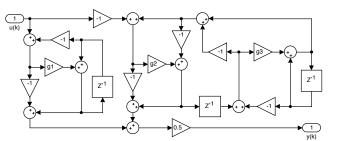


Taking approximation error into account

Narrow the bounds by $\Theta = \langle \langle \Delta S \rangle \rangle + \varepsilon$ and verify the approximation $\widehat{H}(z)$ against updated specifications:

$$\underline{\beta} + \Theta \le \left| \widehat{H}(e^{i\omega}) \right| \le \overline{\beta} - \Theta, \quad \forall \omega \in \Omega$$

Filter implementation:



$$g_1 = 89 \cdot 2^{-8}$$

$$g_2 = 43 \cdot 2^{-7}$$

$$g_3 = 11 \cdot 2^{-7}$$

Specifications:

$$\left\{ \begin{array}{ll} 10^{\frac{1}{20}} \leq & \left| H(e^{i\omega}) \right| \leq & 10^{\frac{3}{20}} & \forall \omega \in [0,\frac{1}{10}\pi] & \text{(passband)} \\ & \left| H(e^{i\omega}) \right| \leq & 10^{-\frac{20}{20}} & \forall \omega \in [\frac{3}{10}\pi,\pi] & \text{(stopband)} \end{array} \right.$$

Verification result: implemented filter *passed* the verification against frequency specifications

Verification time: 1.9 s

Filter implementation: 14th order bandpass filter **Specifications:**

$$\left\{ \begin{array}{ll} 0 dB \leq & \left| \begin{matrix} H(e^{i\omega}) \middle| \leq & -80 \text{dB} & \forall \omega \in [0,17 \text{kHz}] & \text{(stopband)} \\ H(e^{i\omega}) \middle| \leq & 1-10^{-4} \text{dB} & \forall \omega \in [21 \text{kHz},25 \text{kHz}] & \text{(passband)} \\ H(e^{i\omega}) \middle| \leq & -80 \text{dB} & \forall \omega \in [27 \text{kHz},30 \text{kHz}] & \text{(stopband)} \end{array} \right.$$

Verification result: implemented filter *does not* pass the verification against frequency constraints

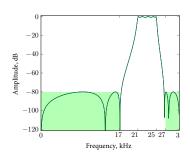
Verification time: 53 s

Filter implementation: 14th order bandpass filter

Verification result: implemented filter does not pass the verification

against frequency constraints

Verification time: 53 s Frequency response:

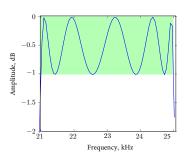


Filter implementation: 14th order bandpass filter

Verification result: implemented filter does not pass the verification

against frequency constraints

Verification time: 53 s Frequency response:



Filter implementation: 14th order bandpass filter

Verification result: implemented filter does not pass the verification

against frequency constraints

Verification time: 53 s Frequency response:



Verification of the 9th order FIR filter from Silviu's presentation:

- coefficients quantized to 7 bits
- error on the transfer function is roughly 0.047
- passband $[0, \frac{1}{3}\pi]$, stopband $[0.5\pi, \pi]$

Verification of the 9th order FIR filter from Silviu's presentation:

- coefficients quantized to 7 bits
- error on the transfer function is roughly 0.047
- passband $[0, \frac{1}{3}\pi]$, stopband $[0.5\pi, \pi]$

Result:

Overall check okay: true Computing this result took 7209ms

Conclusion and Perspectives

Conclusion:

- Reliable a posteriori verification of any implemented linear filter
- Multiple precision approximation of any filter's transfer function
- Approximation errors of the transfer function are fully accounted for
- Algorithm implemented using a combination of rational and interval arithmetic in Sollya
- Use-cases: verification and comparison of implementations, verification on design-stage, verification of design methods

Perspectives:

- Improve algorithm timings
- Prove our implementation with Coq
- Exploit information on the problematic frequencies for more robust design and implementation

Thank you! Questions?

Transfer Function of a State-Space

Transfer function of a single-input single-output state-space S:

$$H(z) = \boldsymbol{c}(z\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{b} + d$$

Using the eigendecomposition $\mathbf{A} = \mathbf{VEV}^{-1}$:

$$H(z) = \frac{P(z)}{Q(z)} + d$$

$$P(z) = \sum_{i=1}^{n} (c V)_{i} (V^{-1}b)_{i} \prod_{j \neq i} (z - \lambda_{j})$$

$$Q(z) = \prod_{i=1}^{n} (z - \lambda_{j})$$

We compute an approximation $\widehat{H}(z)$ in Multiple Precision arithmetic.

Numerical results

Input: four realizations of the same filter

Problem: verify realizations after coefficient quantization to 32/16/8 bits **Results:**

	wordlength	32	16	8
DFIIt	margin	✓	unstable	unstable
	time	12.49s	-	-
ho DFIIt	margin	√	√	4.68e-3 dB
	time	13.12s	4.19s	104.01s
State-Space	margin	6.16e-10 dB	√	6.71e-1 dB
Balanced	time	12.27s	18.18s	92.05s
Lattice Wave	margin	3.80e-10 dB	√	1.73e-2 dB
	time	920.88s	4.58s	200.83s

Numerical results:

Input: four simple frequency specifications

Problem: Verify and compare transfer function design methods.

Results: comparison of SciPy in Python and Matlab

		Butterworth	Chebyshev	Elliptic
		margin (dB)	margin (dB)	margin (dB)
lowpass -	Matlab	1.29e-17	7.93e-17	\checkmark
	SciPy	2.14e-15	4.48e-2	4.48e-2
highpass -	Matlab	2.77e-16	6.94e-17	4.48e-2
	SciPy	3.02e-15	2.29e-16	4.48e-2
bandpass -	Matlab	3.04e-17	√	√
	SciPy	√	4.48e-2	4.48e-2
bandstop	Matlab	4.59e-16	3.09e-15	\checkmark
	SciPy	\checkmark	6.36e-15	7.02e-6

Verification of specifications

Sturm's technique

Sturm's sequence is a sequence of polynomials $p_0(x), \ldots, p_m(x)$:

$$p_{0}(x) = p(x)$$

$$p_{1}(x) = p'(x)$$

$$p_{2}(x) = -rem(p_{0}, p_{1}) = p_{1}(x)q_{0}(x) - p_{0}(x),$$

$$p_{3}(x) = -rem(p_{1}, p_{2}) = p_{2}(x)q_{1}(x) - p_{1}(x),$$

$$\dots$$

$$0 = -rem(p_{m-1}, p_{m})$$