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Linear Time-Invariant Digital Filters

Time domain

u(k) y(k)H Y (z)U(z)

Frequency domain

H(z) =

n∑
i=0

biz
−i

n∑
i=0

aiz−i
, z ∈ C, ai , bi ∈ R
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Frequency specifications

Frequency response (z = e jω)
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β ≤
∣∣H(e iω)

∣∣ ≤ β, ∀ω ∈ [ω1, ω2] ⊆ [0, π]
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Filter evaluation

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k) y(k)

y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

{
x(k + 1) = Ax(k) + bu(k)

y(k) = cx(k) + du(k)

. . .

Typical algorithm : input u(k), state x(k), output y(k)
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Goal: verify an implemented filter

Specifications

Boolean
Rigorous

VerificationFrequency

Filter

Implementation

Answer

Existing approaches:
simulations
approximate magnitude response

Our reliable approach:
no simulations, only proofs
rational and interval arithmetic

We use Computer Arithmetic to make Signal Processing rigorous.
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Example

Filter:

g1

-1

-1

g2

-1

-1

-1

g3-1

-1

1
u(k)

1
y(k)

Z-1

Z-1

Z-1

0.5

g1 = 89 · 2−8

g2 = 43 · 2−7

g3 = 11 · 2−7

Specifications:
{
≤

∣∣H(e iω)
∣∣ ≤ ∀ω ∈ [0, 1

10π] (passband)∣∣H(e iω)
∣∣ ≤ ∀ω ∈ [ 3

10π, π] (stopband)

Transfer Function:
H(z) =

∑n
i=0 biz

−i
∑n

i=0 aiz
−i
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Transfer function verification

Need to show that ∀z = e jω, ω ∈ Ω ⊂ [0, π]

β ≤ |H(z)| ≤ β

We have that

|H(z)|2 =
|b(z)|2

|a(z)|2
=

b(z)b(z)

a(z)a(z)
=

b(z)b(1
z )

a(z)a(1
z )

=:
v(z)

w(z)
,

v(z) and w(z) have real coefficients.
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Reducing the problem to a real rational function

β2 ≤ v(z)

w(z)
≤ β2 z = e jω

∀ω ∈ Ω ⊆ [0, π]

↓
t = tan ω

2
∀ω ∈ Ω ⊆ [0, π]

↓
ξ = t+2−

√
t2+4

2t
∀ξ ∈ Ξ ⊆ [0, 1]
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Reducing the problem to a real rational function

β2 ≤ v(z)

w(z)
≤ β2

We don’t need to deal with complex variables

Change of variable: t = tan ω
2

z = e jω = cosω + j sinω

z = e jω
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Reducing the problem to a real rational function

β2 ≤ v(z)

w(z)
≤ β2

β2 ≤ r(t) + jж(t)

s(t) + jщ(t)︸ ︷︷ ︸
∈R due to |H|2

≤ β2

Polynomials r , s,ж,щ ∈ R[x ]
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Reducing the problem to a real rational function

β2 ≤ v(z)

w(z)
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Mapping t = tan ω
2 maps ω onto the whole R

Change of variable: ξ = t+2−
√
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Reducing the problem to a real rational function

β2 ≤ v(z)

w(z)
≤ β2

β2 ≤ r(t)

s(t)
≤ β2

β2 ≤ p(ξ)

q(ξ)
≤ β2

We compute the PGCD(p, q) with a rigorous
heuristic of Char et al.

z = e jω

∀ω ∈ Ω ⊆ [0, π]
↓

t = tan ω
2

∀ω ∈ Ω ⊆ [0, π]
↓

ξ = t+2−
√
t2+4

2t
∀ξ ∈ Ξ ⊆ [0, 1]
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Reducing the verification problem to showing the
non-negativity of a polynomial

Need to show ∀ξ ∈ Ξ ⊆ [0, 1] that

β2 ≤ p(ξ)

q(ξ)
≤ β

2
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Reducing the verification problem to showing the
non-negativity of a polynomial

Need to show ∀ξ ∈ Ξ ⊆ [0, 1] that

β2 −
β2 + β

2

2
≤ p(ξ)

q(ξ)
−

β2 + β
2

2
≤ β

2 −
β2 + β

2

2
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Reducing the verification problem to showing the
non-negativity of a polynomial

Need to show ∀ξ ∈ Ξ ⊆ [0, 1] that

−
β

2 − β2

2
≤

p(ξ)−
(
β2 + β

2
)
q(ξ)

2q(ξ)
≤

β
2 − β2

2
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Reducing the verification problem to showing the
non-negativity of a polynomial

Need to show ∀ξ ∈ Ξ ⊆ [0, 1] that

− 1 ≤ 2

β
2 − β2



p(ξ)−

(
β2 + β

2
)
q(ξ)

2q(ξ)


 ≤ 1
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Reducing the verification problem to showing the
non-negativity of a polynomial

Need to show ∀ξ ∈ Ξ ⊆ [0, 1] that

− 1 ≤ g(ξ)

h(ξ)
≤ 1
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Reducing the verification problem to showing the
non-negativity of a polynomial

Need to show ∀ξ ∈ Ξ ⊆ [0, 1] that

g 2(ξ)

h2(ξ)
≤ 1
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Reducing the verification problem to showing the
non-negativity of a polynomial

It suffices to show ∀ξ ∈ Ξ ⊆ [0, 1] that

h2(ξ)− g 2(ξ) ≥ 0
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Reducing the verification problem to showing the
non-negativity of a polynomial

It suffices to show ∀ξ ∈ Ξ ⊆ [0, 1] that

f (ξ) ≥ 0

All these transformations are performed exactly with rational arithmetic.
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Checking non-negativity of a real polynomial

To verify f (ξ) ≥ 0, ∀ξ ∈ Ξ = [ξ1, ξ2] ⊆ [0, 1] we check if

(i) f (ξ) has no zeros
f (ξ′) > 0 for some ξ′ ∈ [ξ1, ξ2]

⇠1 ⇠2⇠0

(ii) f (ξ) has one zero
f (ξ1) > 0 and f (ξ2) > 0 ⇠1 ⇠2⇠00

(iii) interval Ξ can be split into subintervals
s.t. (i) or (ii) are satisfied for every subinterval

We use Sollya tool for the implementation
Number of zeros: Sturm’s theorem
Evaluations: interval multiple precision arithmetic
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Wrapping-Up

Does this transfer function verify the frequency specifications?

Yes No

�̄

�

!
[ ] [ ] [ ][ ]

!̃1 !̃2 !̃3 !̃4

��H(ej!)
��
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Verifying arbitrary filter implementation

Transfer
Function

Implemented
filter

State-Space system:

S
{

x(k + 1) = Ax(k) + bu(k)
y(k) = cx(k) + du(k)

Corresponding Transfer Function:

H(z) = c(zI − )−1b + d

Need to:

Compute an approximation Ĥ(z) with arbitrary precision (mpmath)

Exhibit a reliable bound on the approximation error
∣∣∣
(
H − Ĥ

)
(e jω)

∣∣∣
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Compute an approximation Ĥ(z) with arbitrary precision (mpmath)

Exhibit a reliable bound on the approximation error
∣∣∣
(
H − Ĥ

)
(e jω)

∣∣∣
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

H

S
?

Relation between ∆S and ∆H:
∣∣∣
(
H − Ĥ

)
(e jω)

∣∣∣ ≤ 〈〈∆S〉〉 , ∀ω ∈ [0, 2π]

where 〈〈∆S〉〉 is the Worst-Case Peak Gain of the system ∆S.

We can evaluate 〈〈∆S〉〉 with a priori error ε [ARITH2015].

We obtain a multiple precision approximation Ĥ on the transfer function
with a reliable error bound.
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Bounding the approximation error

Computing the transfer function H(z) of the state-space system S:

H bH

S
?

bS

Transformation from Ĥ to Ŝ is exact:

Â =




−â1 1
...

. . .
... 1
−ân 0 . . . 0




b̂ =




b̂1 − â1b̂0
...
...

b̂n − ânb̂0




ĉ =
(
1 0 · · · 0

)
d̂ = b̂0
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)
(e jω)
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bS� = �S

Difference of filters is defined as:

S

�S

bS

y(k)

by(k)

¢y(k)u(k)

Relation between ∆S and ∆H:∣∣∣
(
H − Ĥ
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)
(e jω)

∣∣∣ ≤ 〈〈∆S〉〉 , ∀ω ∈ [0, 2π]

where 〈〈∆S〉〉 is the Worst-Case Peak Gain of the system ∆S.

We can evaluate 〈〈∆S〉〉 with a priori error ε [ARITH2015].

We obtain a multiple precision approximation Ĥ on the transfer function
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Verifying a LTI filter implementation

�̄

�

|H(ej!)|

!

�̄ �⇥

� + ⇥

Taking approximation error into account

Narrow the bounds by Θ = 〈〈∆S〉〉+ ε and verify the approximation Ĥ(z)
against updated specifications:

β + Θ ≤
∣∣∣Ĥ(e iω)

∣∣∣ ≤ β −Θ, ∀ω ∈ Ω
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Numerical results: example 1

Filter implementation:

g1

-1

-1

g2

-1

-1

-1

g3-1

-1

1
u(k)

1
y(k)

Z-1

Z-1

Z-1

0.5

g1 = 89 · 2−8

g2 = 43 · 2−7

g3 = 11 · 2−7

Specifications:
{

10
1
20 ≤

∣∣H(e iω)
∣∣ ≤ 10

3
20 ∀ω ∈ [0, 1

10π] (passband)∣∣H(e iω)
∣∣ ≤ 10−

20
20 ∀ω ∈ [ 3

10π, π] (stopband)

Verification result: implemented filter passed the verification against
frequency specifications
Verification time: 1.9 s
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Numerical results: example 2

Filter implementation: 14th order bandpass filter
Specifications:





∣∣H(e iω)
∣∣ ≤ −80dB ∀ω ∈ [0, 17kHz] (stopband)

0dB ≤
∣∣H(e iω)

∣∣ ≤ 1− 10−4dB ∀ω ∈ [21kHz, 25kHz] (passband)∣∣H(e iω)
∣∣ ≤ −80dB ∀ω ∈ [27kHz, 30kHz] (stopband)

Verification result: implemented filter does not pass the verification
against frequency constraints
Verification time: 53 s
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Numerical results: example 3

Verification of the 9th order FIR filter from Silviu’s presentation:
coefficients quantized to 7 bits
error on the transfer function is roughly 0.047
passband [0, 1

3π], stopband [0.5π, π]

Result:
Overall check okay: true
Computing this result took 7209ms
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Conclusion and Perspectives

Conclusion:

Reliable a posteriori verification of any implemented linear filter
Multiple precision approximation of any filter’s transfer function
Approximation errors of the transfer function are fully accounted for
Algorithm implemented using a combination of rational and interval
arithmetic in Sollya
Use-cases: verification and comparison of implementations, verification
on design-stage, verification of design methods

Perspectives:
Improve algorithm timings
Prove our implementation with Coq
Exploit information on the problematic frequencies for more robust
design and implementation
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Thank you!
Questions?
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Transfer Function of a State-Space

Transfer function of a single-input single-output state-space S:

H(z) = c(zI − A)−1b + d

Using the eigendecomposition A = VEV−1:

H(z) =
P(z)

Q(z)
+ d

P(z) =
n∑

i=1

(cV )i (V−1b)i
∏

j 6=i

(z − λj)

Q(z) =
n∏

j=1

(z − λj)

We compute an approximation Ĥ(z) in Multiple Precision arithmetic.
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Numerical results

Input: four realizations of the same filter
Problem: verify realizations after coefficient quantization to 32/16/8 bits
Results:

wordlength 32 16 8

DFIIt
margin X unstable unstable
time 12.49s - -

ρ DFIIt
margin X X 4.68e-3 dB
time 13.12s 4.19s 104.01s

State-Space
Balanced

margin 6.16e-10 dB X 6.71e-1 dB
time 12.27s 18.18s 92.05s

Lattice Wave
margin 3.80e-10 dB X 1.73e-2 dB
time 920.88s 4.58s 200.83s
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Numerical results:

Input: four simple frequency specifications
Problem: Verify and compare transfer function design methods.
Results: comparison of SciPy in Python and Matlab

Butterworth Chebyshev Elliptic
margin (dB) margin (dB) margin (dB)

lowpass
Matlab 1.29e-17 7.93e-17 X
SciPy 2.14e-15 4.48e-2 4.48e-2

highpass
Matlab 2.77e-16 6.94e-17 4.48e-2
SciPy 3.02e-15 2.29e-16 4.48e-2

bandpass
Matlab 3.04e-17 X X
SciPy X 4.48e-2 4.48e-2

bandstop
Matlab 4.59e-16 3.09e-15 X
SciPy X 6.36e-15 7.02e-6
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Verification of specifications
Sturm’s technique

Sturm’s sequence is a sequence of polynomials p0(x), . . . , pm(x):

p0(x) = p(x)

p1(x) = p′(x)

p2(x) = −rem(p0, p1) = p1(x)q0(x)− p0(x),

p3(x) = −rem(p1, p2) = p2(x)q1(x)− p1(x),

. . .

0 = −rem(pm−1, pm)
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